一种新型的五轴交叉耦合控制系统,考虑了进给驱动系统的运动和动态约束

IF 2 Q3 ENGINEERING, MANUFACTURING
Jeongmo Kang, Sungchul Jee
{"title":"一种新型的五轴交叉耦合控制系统,考虑了进给驱动系统的运动和动态约束","authors":"Jeongmo Kang,&nbsp;Sungchul Jee","doi":"10.1016/j.mfglet.2025.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced cross-coupling control (CCC) system for five-axis machine tools that enhances contour accuracy during simultaneous machining. The method considers both the dynamic constraints of feed drive and the intricate kinematic relationships between the workpiece coordinate system (WCS) and the machine coordinate system (MCS). The method ensures precise control of tool trajectories and orientations by calculating compensation vectors for both the translational and rotational axes. These dynamically respect the constraints of each feed drive when minimizing contour and orientation errors. In contrast to recent works that sought to improve contour accuracy, our approach reduces any need for complex mathematical modeling, facilitating immediate integration with various computerized numerical control (CNC) machine tool configurations. Experimentally, machining contour accuracy and surface quality improved; the method is very precise. Again, the method can be seamlessly integrated with existing CNC machine tools; this ensures immediate industrial applications.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 36-47"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel five-axis cross-coupling control system that considers the motion and dynamic constraints of feed drive systems\",\"authors\":\"Jeongmo Kang,&nbsp;Sungchul Jee\",\"doi\":\"10.1016/j.mfglet.2025.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an advanced cross-coupling control (CCC) system for five-axis machine tools that enhances contour accuracy during simultaneous machining. The method considers both the dynamic constraints of feed drive and the intricate kinematic relationships between the workpiece coordinate system (WCS) and the machine coordinate system (MCS). The method ensures precise control of tool trajectories and orientations by calculating compensation vectors for both the translational and rotational axes. These dynamically respect the constraints of each feed drive when minimizing contour and orientation errors. In contrast to recent works that sought to improve contour accuracy, our approach reduces any need for complex mathematical modeling, facilitating immediate integration with various computerized numerical control (CNC) machine tool configurations. Experimentally, machining contour accuracy and surface quality improved; the method is very precise. Again, the method can be seamlessly integrated with existing CNC machine tools; this ensures immediate industrial applications.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"44 \",\"pages\":\"Pages 36-47\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221384632500029X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221384632500029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种先进的五轴机床交叉耦合控制系统,可提高同步加工时的轮廓精度。该方法既考虑了进给驱动的动力学约束,又考虑了工件坐标系与机床坐标系之间复杂的运动关系。该方法通过计算平移轴和旋转轴的补偿矢量,确保了刀具轨迹和方向的精确控制。当最小化轮廓和方向误差时,这些动态地尊重每个进给驱动器的约束。与最近试图提高轮廓精度的工作相反,我们的方法减少了对复杂数学建模的任何需求,促进了与各种计算机数控(CNC)机床配置的即时集成。实验结果表明,加工轮廓精度和表面质量得到了提高;这种方法非常精确。再次,该方法可以与现有的数控机床无缝集成;这确保了直接的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel five-axis cross-coupling control system that considers the motion and dynamic constraints of feed drive systems
This study presents an advanced cross-coupling control (CCC) system for five-axis machine tools that enhances contour accuracy during simultaneous machining. The method considers both the dynamic constraints of feed drive and the intricate kinematic relationships between the workpiece coordinate system (WCS) and the machine coordinate system (MCS). The method ensures precise control of tool trajectories and orientations by calculating compensation vectors for both the translational and rotational axes. These dynamically respect the constraints of each feed drive when minimizing contour and orientation errors. In contrast to recent works that sought to improve contour accuracy, our approach reduces any need for complex mathematical modeling, facilitating immediate integration with various computerized numerical control (CNC) machine tool configurations. Experimentally, machining contour accuracy and surface quality improved; the method is very precise. Again, the method can be seamlessly integrated with existing CNC machine tools; this ensures immediate industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信