多孔骨折固定器的设计、混合制造和表征

IF 2 Q3 ENGINEERING, MANUFACTURING
Johnathan Perino , Panayiotis Kousoulas , Y.B. Guo
{"title":"多孔骨折固定器的设计、混合制造和表征","authors":"Johnathan Perino ,&nbsp;Panayiotis Kousoulas ,&nbsp;Y.B. Guo","doi":"10.1016/j.mfglet.2025.06.099","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) enables the production of complex, highly porous geometries that would be impossible to create with subtractive methods. These geometries have generated much interest in their potential applications for decreasing the weight of traditional parts as well as their potential use in orthopedic implants, such as headless compression screws. Pore size and implant porosity play an important role in the osseointegrative performance of porous implants. Ensuring that the porosity of the physical part matches that of the CAD model is thus key to implant performance. However, more work is needed to design, fabricate, and evaluate the manufacturability of AM porous implants. The threefold objectives of this study are as follows. (1) Cylindrical screw blanks with three different porosity patterns are designed in CAD. (2) The blanks are fabricated using the laser-powder bed fusion (LPBF) process, followed by manual threading. (3) The resulting porosity of each LPBF blank is characterized using optical microscopy as well as micro-CT and compared to the CAD model. It was found that the as-printed porosity did not match well with the CAD model, with the measured mean pore size about 30% larger than the theoretical. Future work involves a redesign of the blank geometry to better integrate a porous core with threaded sections as well as mechanical testing to determine feasibility of use for fixation.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 839-846"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, hybrid manufacturing, and characterization of porous fracture fixators\",\"authors\":\"Johnathan Perino ,&nbsp;Panayiotis Kousoulas ,&nbsp;Y.B. Guo\",\"doi\":\"10.1016/j.mfglet.2025.06.099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing (AM) enables the production of complex, highly porous geometries that would be impossible to create with subtractive methods. These geometries have generated much interest in their potential applications for decreasing the weight of traditional parts as well as their potential use in orthopedic implants, such as headless compression screws. Pore size and implant porosity play an important role in the osseointegrative performance of porous implants. Ensuring that the porosity of the physical part matches that of the CAD model is thus key to implant performance. However, more work is needed to design, fabricate, and evaluate the manufacturability of AM porous implants. The threefold objectives of this study are as follows. (1) Cylindrical screw blanks with three different porosity patterns are designed in CAD. (2) The blanks are fabricated using the laser-powder bed fusion (LPBF) process, followed by manual threading. (3) The resulting porosity of each LPBF blank is characterized using optical microscopy as well as micro-CT and compared to the CAD model. It was found that the as-printed porosity did not match well with the CAD model, with the measured mean pore size about 30% larger than the theoretical. Future work involves a redesign of the blank geometry to better integrate a porous core with threaded sections as well as mechanical testing to determine feasibility of use for fixation.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"44 \",\"pages\":\"Pages 839-846\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846325001312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325001312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)能够生产复杂的、高度多孔的几何形状,这是用减法方法无法创造的。这些几何形状在减少传统零件重量的潜在应用以及在骨科植入物(如无头压缩螺钉)中的潜在应用方面引起了人们的极大兴趣。孔尺寸和种植体孔隙度对多孔种植体的骨整合性能有重要影响。因此,确保物理部分的孔隙度与CAD模型的孔隙度相匹配是植入物性能的关键。然而,AM多孔植入物的设计、制造和可制造性评估还需要做更多的工作。本研究的三个目标如下。(1)在CAD中设计了三种不同孔隙率的圆柱螺杆毛坯。(2)坯料采用激光-粉末床熔合(LPBF)工艺,再进行手工穿线加工。(3)利用光学显微镜和micro-CT对每个LPBF空白的孔隙度进行表征,并与CAD模型进行比较。结果表明,打印孔隙率与CAD模型的匹配不太好,实测平均孔径比理论孔径大30%左右。未来的工作包括重新设计毛坯几何形状,以更好地将多孔芯与螺纹部分结合起来,并进行机械测试,以确定固定的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, hybrid manufacturing, and characterization of porous fracture fixators
Additive manufacturing (AM) enables the production of complex, highly porous geometries that would be impossible to create with subtractive methods. These geometries have generated much interest in their potential applications for decreasing the weight of traditional parts as well as their potential use in orthopedic implants, such as headless compression screws. Pore size and implant porosity play an important role in the osseointegrative performance of porous implants. Ensuring that the porosity of the physical part matches that of the CAD model is thus key to implant performance. However, more work is needed to design, fabricate, and evaluate the manufacturability of AM porous implants. The threefold objectives of this study are as follows. (1) Cylindrical screw blanks with three different porosity patterns are designed in CAD. (2) The blanks are fabricated using the laser-powder bed fusion (LPBF) process, followed by manual threading. (3) The resulting porosity of each LPBF blank is characterized using optical microscopy as well as micro-CT and compared to the CAD model. It was found that the as-printed porosity did not match well with the CAD model, with the measured mean pore size about 30% larger than the theoretical. Future work involves a redesign of the blank geometry to better integrate a porous core with threaded sections as well as mechanical testing to determine feasibility of use for fixation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信