锻模现场监测的高温结构光扫描

IF 2 Q3 ENGINEERING, MANUFACTURING
Jake Dvorak, Tony Schmitz
{"title":"锻模现场监测的高温结构光扫描","authors":"Jake Dvorak,&nbsp;Tony Schmitz","doi":"10.1016/j.mfglet.2025.06.051","DOIUrl":null,"url":null,"abstract":"<div><div>Metrology grade structured light scanning has been established as an effective non-contact measurement method for dimensional analysis of complex components at standard temperatures. Initial efforts have demonstrated the use of custom structured light systems for measurements of forgings and at elevated temperature environments. However, little work has been done to evaluate the performance of metrology grade structured light systems at elevated temperatures. This paper provides a performance baseline for a commercially available ZEISS ATOS Q structured light system using a calibrated gage block at elevated temperatures. Results show that the measured length of the gage block matches that of simulated lengths using a temperature-dependent coefficient of thermal expansion taken from handbook data. These results motivate the use of structured light scanning for measurements in forging and other elevated temperature manufacturing applications.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 430-433"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated temperature structured light scanning for in situ monitoring of forging dies\",\"authors\":\"Jake Dvorak,&nbsp;Tony Schmitz\",\"doi\":\"10.1016/j.mfglet.2025.06.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metrology grade structured light scanning has been established as an effective non-contact measurement method for dimensional analysis of complex components at standard temperatures. Initial efforts have demonstrated the use of custom structured light systems for measurements of forgings and at elevated temperature environments. However, little work has been done to evaluate the performance of metrology grade structured light systems at elevated temperatures. This paper provides a performance baseline for a commercially available ZEISS ATOS Q structured light system using a calibrated gage block at elevated temperatures. Results show that the measured length of the gage block matches that of simulated lengths using a temperature-dependent coefficient of thermal expansion taken from handbook data. These results motivate the use of structured light scanning for measurements in forging and other elevated temperature manufacturing applications.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"44 \",\"pages\":\"Pages 430-433\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846325000835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

计量级结构光扫描已成为标准温度下复杂部件尺寸分析的一种有效的非接触测量方法。最初的努力已经证明了使用定制的结构光系统来测量锻件和高温环境。然而,很少有研究对计量级结构光系统在高温下的性能进行评估。本文提供了一种商用蔡司ATOS Q结构光系统的性能基线,该系统使用在高温下校准的量块。结果表明,测量的量块长度与从手册数据中获得的热膨胀温度相关系数的模拟长度相匹配。这些结果激发了在锻造和其他高温制造应用中使用结构光扫描进行测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated temperature structured light scanning for in situ monitoring of forging dies
Metrology grade structured light scanning has been established as an effective non-contact measurement method for dimensional analysis of complex components at standard temperatures. Initial efforts have demonstrated the use of custom structured light systems for measurements of forgings and at elevated temperature environments. However, little work has been done to evaluate the performance of metrology grade structured light systems at elevated temperatures. This paper provides a performance baseline for a commercially available ZEISS ATOS Q structured light system using a calibrated gage block at elevated temperatures. Results show that the measured length of the gage block matches that of simulated lengths using a temperature-dependent coefficient of thermal expansion taken from handbook data. These results motivate the use of structured light scanning for measurements in forging and other elevated temperature manufacturing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信