{"title":"评价等原子Ni-Al-Co-Fe-Mn-Ti-Cr高熵合金在氧化和非氧化环境下热处理的显微组织变化和硬度","authors":"Emmanuel Olorundaisi, Peter A. Olubambi","doi":"10.1016/j.mfglet.2025.06.048","DOIUrl":null,"url":null,"abstract":"<div><div>Microstructural changes and hardness behaviour of equal atomic Ni-Al-Co-Fe-Mn-Ti-Cr High-Entropy Alloy (HEA) subjected to heat treatment in oxidative and non-oxidative environments were investigated. The samples were annealed for four hours at a temperature of 700 °C. The microstructure revealed the formation of a well-refined granular and needle-like eutectic phase with an average size. An oxidized layer was observed on the surface of the sample heat-treated in an oxidized environment. The heat-treated samples exhibited improved ductility with a drop in hardness value from 136.3 HV for the non-heat-treated to 98.1 and 92.8 HV for the heat-treated in an oxidized and non-oxidized environment, respectively. The heat treatment results can be considered a promising approach for producing high-performance HEAs, particularly for advanced engineering applications.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 405-415"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating microstructural changes and hardness in equal atomic Ni-Al-Co-Fe-Mn-Ti-Cr high-entropy alloy subjected to heat treatment in oxidative and non-oxidative environments\",\"authors\":\"Emmanuel Olorundaisi, Peter A. Olubambi\",\"doi\":\"10.1016/j.mfglet.2025.06.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microstructural changes and hardness behaviour of equal atomic Ni-Al-Co-Fe-Mn-Ti-Cr High-Entropy Alloy (HEA) subjected to heat treatment in oxidative and non-oxidative environments were investigated. The samples were annealed for four hours at a temperature of 700 °C. The microstructure revealed the formation of a well-refined granular and needle-like eutectic phase with an average size. An oxidized layer was observed on the surface of the sample heat-treated in an oxidized environment. The heat-treated samples exhibited improved ductility with a drop in hardness value from 136.3 HV for the non-heat-treated to 98.1 and 92.8 HV for the heat-treated in an oxidized and non-oxidized environment, respectively. The heat treatment results can be considered a promising approach for producing high-performance HEAs, particularly for advanced engineering applications.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"44 \",\"pages\":\"Pages 405-415\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221384632500080X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221384632500080X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Evaluating microstructural changes and hardness in equal atomic Ni-Al-Co-Fe-Mn-Ti-Cr high-entropy alloy subjected to heat treatment in oxidative and non-oxidative environments
Microstructural changes and hardness behaviour of equal atomic Ni-Al-Co-Fe-Mn-Ti-Cr High-Entropy Alloy (HEA) subjected to heat treatment in oxidative and non-oxidative environments were investigated. The samples were annealed for four hours at a temperature of 700 °C. The microstructure revealed the formation of a well-refined granular and needle-like eutectic phase with an average size. An oxidized layer was observed on the surface of the sample heat-treated in an oxidized environment. The heat-treated samples exhibited improved ductility with a drop in hardness value from 136.3 HV for the non-heat-treated to 98.1 and 92.8 HV for the heat-treated in an oxidized and non-oxidized environment, respectively. The heat treatment results can be considered a promising approach for producing high-performance HEAs, particularly for advanced engineering applications.