超声辅助电化学放电加工玻璃微加工的数值与实验研究

IF 2 Q3 ENGINEERING, MANUFACTURING
Anurag Shanu , Sharad Valvi , Pradeep Dixit
{"title":"超声辅助电化学放电加工玻璃微加工的数值与实验研究","authors":"Anurag Shanu ,&nbsp;Sharad Valvi ,&nbsp;Pradeep Dixit","doi":"10.1016/j.mfglet.2025.06.069","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses challenges in debris removal and electrolyte replenishment during the electrochemical discharge micromachining (ECDM) of glass. The study presents a comprehensive numerical and experimental study of glass micromachining using ultrasonic-assisted electrochemical discharge machining (UA-ECDM). A finite element method (FEM)-based numerical model was developed to simulate the effects of ultrasonic vibrations on electrolyte flow and debris movement. The simulation results reveal that increasing ultrasonic amplitudes from 5 µm to 10 µm improves the electrolyte flow velocity two times at the microhole bottom. Additionally, ultrasonic vibration enhances debris distribution, shifting it towards the periphery of the<!--> <!-->microhole, thus improving the electrochemical discharge conditions. Experimentally, glass micromachining was performed at different ultrasonic amplitudes (0, 5, 8, and 10 µm). The results demonstrate that ultrasonic vibrations increase machining depth, reducing hole taper as a result of improving electrolyte circulation, correlating with the simulation result. A 3 × 3 array of holes was successfully fabricated on a glass substrate with a depth of 835 µm, confirming the feasibility of UA-ECDM for microhole drilling. This study confirms that UA-ECDM improves electrolyte circulation, enhancing electrochemical reactions at the tool-workpiece interface and increasing machining depth.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 588-593"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental investigation of glass micromachining using ultrasonic-assisted electrochemical discharge machining\",\"authors\":\"Anurag Shanu ,&nbsp;Sharad Valvi ,&nbsp;Pradeep Dixit\",\"doi\":\"10.1016/j.mfglet.2025.06.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses challenges in debris removal and electrolyte replenishment during the electrochemical discharge micromachining (ECDM) of glass. The study presents a comprehensive numerical and experimental study of glass micromachining using ultrasonic-assisted electrochemical discharge machining (UA-ECDM). A finite element method (FEM)-based numerical model was developed to simulate the effects of ultrasonic vibrations on electrolyte flow and debris movement. The simulation results reveal that increasing ultrasonic amplitudes from 5 µm to 10 µm improves the electrolyte flow velocity two times at the microhole bottom. Additionally, ultrasonic vibration enhances debris distribution, shifting it towards the periphery of the<!--> <!-->microhole, thus improving the electrochemical discharge conditions. Experimentally, glass micromachining was performed at different ultrasonic amplitudes (0, 5, 8, and 10 µm). The results demonstrate that ultrasonic vibrations increase machining depth, reducing hole taper as a result of improving electrolyte circulation, correlating with the simulation result. A 3 × 3 array of holes was successfully fabricated on a glass substrate with a depth of 835 µm, confirming the feasibility of UA-ECDM for microhole drilling. This study confirms that UA-ECDM improves electrolyte circulation, enhancing electrochemical reactions at the tool-workpiece interface and increasing machining depth.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"44 \",\"pages\":\"Pages 588-593\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846325001014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325001014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了玻璃电解放电微加工(ECDM)过程中碎屑去除和电解液补充所面临的挑战。本文对超声辅助电化学放电加工(UA-ECDM)玻璃微加工进行了全面的数值和实验研究。建立了基于有限元法的数值模型,模拟了超声振动对电解液流动和碎屑运动的影响。仿真结果表明,当超声振幅从5 µm增加到10 µm时,电解液在微孔底部的流动速度提高了2倍。此外,超声振动增强了碎屑的分布,使其向微孔外围移动,从而改善了电化学放电条件。实验中,在不同的超声波振幅(0、5、8和10 µm)下进行玻璃微加工。结果表明,超声振动可以提高加工深度,减小孔锥度,从而改善电解液循环,这与仿真结果相吻合。在深度为835 µm的玻璃基板上成功制备了3 × 3孔阵列,证实了UA-ECDM用于微孔钻孔的可行性。该研究证实了UA-ECDM改善了电解液循环,增强了刀具-工件界面的电化学反应,增加了加工深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and experimental investigation of glass micromachining using ultrasonic-assisted electrochemical discharge machining
This paper addresses challenges in debris removal and electrolyte replenishment during the electrochemical discharge micromachining (ECDM) of glass. The study presents a comprehensive numerical and experimental study of glass micromachining using ultrasonic-assisted electrochemical discharge machining (UA-ECDM). A finite element method (FEM)-based numerical model was developed to simulate the effects of ultrasonic vibrations on electrolyte flow and debris movement. The simulation results reveal that increasing ultrasonic amplitudes from 5 µm to 10 µm improves the electrolyte flow velocity two times at the microhole bottom. Additionally, ultrasonic vibration enhances debris distribution, shifting it towards the periphery of the microhole, thus improving the electrochemical discharge conditions. Experimentally, glass micromachining was performed at different ultrasonic amplitudes (0, 5, 8, and 10 µm). The results demonstrate that ultrasonic vibrations increase machining depth, reducing hole taper as a result of improving electrolyte circulation, correlating with the simulation result. A 3 × 3 array of holes was successfully fabricated on a glass substrate with a depth of 835 µm, confirming the feasibility of UA-ECDM for microhole drilling. This study confirms that UA-ECDM improves electrolyte circulation, enhancing electrochemical reactions at the tool-workpiece interface and increasing machining depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信