AlN增强聚醚砜复合材料具有稳定的高能量密度,通过协同热管理和抑制电树

IF 14.2 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yue Zhang , Guowei Hao , Kunjun Jiang , Changhai Zhang , Yongquan Zhang , Tiandong Zhang , Huajie Yi , Qi Wang , Tao Shen
{"title":"AlN增强聚醚砜复合材料具有稳定的高能量密度,通过协同热管理和抑制电树","authors":"Yue Zhang ,&nbsp;Guowei Hao ,&nbsp;Kunjun Jiang ,&nbsp;Changhai Zhang ,&nbsp;Yongquan Zhang ,&nbsp;Tiandong Zhang ,&nbsp;Huajie Yi ,&nbsp;Qi Wang ,&nbsp;Tao Shen","doi":"10.1016/j.compositesb.2025.112983","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-based dielectrics have attracted considerable attention due to their high energy storage density (<em>U</em>) and flexibility in processing. However, polymer dielectrics suffer from conduction losses under high fields and temperatures, which reduces the discharge energy density (<em>U</em><sub>e</sub>) and charge-discharge efficiency (<em>η</em>), therefore, effective heat dissipation and maintaining performance at elevated temperatures remain critical challenges that require immediate solutions. In this study, we developed composite materials using polyethersulfone (PESU) as the matrix, incorporating varying mass fractions (1 wt%, 3 wt%, 5 wt%, and 7 wt%) of aluminum nitride (AlN) filler. Simultaneously, we systematically analyzed the thermal conductivity, electric field distribution, and electric tree evolution behavior of the composite material through finite element simulation. Experimental results indicate that, at room temperature, the composite material with 1 wt% AlN in PESU achieves a discharge energy density of 7.39 J/cm<sup>3</sup> at 520 kV/mm, while maintaining a charge-discharge efficiency exceeding 93.5 %. The breakdown strength (<em>E</em><sub>b</sub>) of this composite reaches 531 kV/mm, representing a 28.9 % improvement compared to pure PESU. At elevated temperatures of 60 °C and 100 °C, the <em>E</em><sub>b</sub> of 1 wt% AlN-PESU increases by 42.1 % and 75.4 %, respectively, compared to PESU. Furthermore, simulation results confirm that the introduction of AlN filler significantly improves the thermal conductivity of the composite material, effectively suppresses local temperature rise and electric field distortion, contributing to the suppression of electric tree initiation and retards the progression toward electrical breakdown. This study provides theoretical foundation and engineering route for high-performance polymer-based dielectric materials with broad application value.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"308 ","pages":"Article 112983"},"PeriodicalIF":14.2000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlN reinforced polyethersulfone composite with stable high-energy-density via synergizing thermal management and suppressed electrical treeing\",\"authors\":\"Yue Zhang ,&nbsp;Guowei Hao ,&nbsp;Kunjun Jiang ,&nbsp;Changhai Zhang ,&nbsp;Yongquan Zhang ,&nbsp;Tiandong Zhang ,&nbsp;Huajie Yi ,&nbsp;Qi Wang ,&nbsp;Tao Shen\",\"doi\":\"10.1016/j.compositesb.2025.112983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer-based dielectrics have attracted considerable attention due to their high energy storage density (<em>U</em>) and flexibility in processing. However, polymer dielectrics suffer from conduction losses under high fields and temperatures, which reduces the discharge energy density (<em>U</em><sub>e</sub>) and charge-discharge efficiency (<em>η</em>), therefore, effective heat dissipation and maintaining performance at elevated temperatures remain critical challenges that require immediate solutions. In this study, we developed composite materials using polyethersulfone (PESU) as the matrix, incorporating varying mass fractions (1 wt%, 3 wt%, 5 wt%, and 7 wt%) of aluminum nitride (AlN) filler. Simultaneously, we systematically analyzed the thermal conductivity, electric field distribution, and electric tree evolution behavior of the composite material through finite element simulation. Experimental results indicate that, at room temperature, the composite material with 1 wt% AlN in PESU achieves a discharge energy density of 7.39 J/cm<sup>3</sup> at 520 kV/mm, while maintaining a charge-discharge efficiency exceeding 93.5 %. The breakdown strength (<em>E</em><sub>b</sub>) of this composite reaches 531 kV/mm, representing a 28.9 % improvement compared to pure PESU. At elevated temperatures of 60 °C and 100 °C, the <em>E</em><sub>b</sub> of 1 wt% AlN-PESU increases by 42.1 % and 75.4 %, respectively, compared to PESU. Furthermore, simulation results confirm that the introduction of AlN filler significantly improves the thermal conductivity of the composite material, effectively suppresses local temperature rise and electric field distortion, contributing to the suppression of electric tree initiation and retards the progression toward electrical breakdown. This study provides theoretical foundation and engineering route for high-performance polymer-based dielectric materials with broad application value.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"308 \",\"pages\":\"Article 112983\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825008947\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825008947","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物基电介质由于其高能量存储密度和加工的灵活性而引起了人们的广泛关注。然而,聚合物电介质在高场和高温下存在传导损耗,降低了放电能量密度(Ue)和充放电效率(η),因此,有效散热和保持高温下的性能仍然是迫切需要解决的关键挑战。在本研究中,我们开发了以聚醚砜(PESU)为基体的复合材料,加入不同质量分数(1wt %, 3wt %, 5wt %和7wt %)的氮化铝(AlN)填料。同时,通过有限元模拟系统分析了复合材料的导热系数、电场分布和电树演化行为。实验结果表明,在室温下,在520 kV/mm下,AlN含量为1 wt%的复合材料的放电能量密度为7.39 J/cm3,充放电效率超过93.5%。该复合材料的击穿强度(Eb)达到531 kV/mm,与纯PESU相比提高了28.9%。在60°C和100°C的高温下,与PESU相比,1 wt% AlN-PESU的Eb分别增加了42.1%和75.4%。此外,仿真结果证实,AlN填料的引入显著提高了复合材料的导热性,有效抑制了局部温升和电场畸变,有助于抑制电树的产生,延缓了电击穿的进展。本研究为高性能聚合物基介电材料的研究提供了理论基础和工程路线,具有广阔的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AlN reinforced polyethersulfone composite with stable high-energy-density via synergizing thermal management and suppressed electrical treeing

AlN reinforced polyethersulfone composite with stable high-energy-density via synergizing thermal management and suppressed electrical treeing
Polymer-based dielectrics have attracted considerable attention due to their high energy storage density (U) and flexibility in processing. However, polymer dielectrics suffer from conduction losses under high fields and temperatures, which reduces the discharge energy density (Ue) and charge-discharge efficiency (η), therefore, effective heat dissipation and maintaining performance at elevated temperatures remain critical challenges that require immediate solutions. In this study, we developed composite materials using polyethersulfone (PESU) as the matrix, incorporating varying mass fractions (1 wt%, 3 wt%, 5 wt%, and 7 wt%) of aluminum nitride (AlN) filler. Simultaneously, we systematically analyzed the thermal conductivity, electric field distribution, and electric tree evolution behavior of the composite material through finite element simulation. Experimental results indicate that, at room temperature, the composite material with 1 wt% AlN in PESU achieves a discharge energy density of 7.39 J/cm3 at 520 kV/mm, while maintaining a charge-discharge efficiency exceeding 93.5 %. The breakdown strength (Eb) of this composite reaches 531 kV/mm, representing a 28.9 % improvement compared to pure PESU. At elevated temperatures of 60 °C and 100 °C, the Eb of 1 wt% AlN-PESU increases by 42.1 % and 75.4 %, respectively, compared to PESU. Furthermore, simulation results confirm that the introduction of AlN filler significantly improves the thermal conductivity of the composite material, effectively suppresses local temperature rise and electric field distortion, contributing to the suppression of electric tree initiation and retards the progression toward electrical breakdown. This study provides theoretical foundation and engineering route for high-performance polymer-based dielectric materials with broad application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信