多尺度建筑钛基复合材料的优异抗蠕变性能:来自微尺度内应力的见解

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xin Chen , Lujun Huang , Shipeng Zhou , Shaocong Xiong , Yu Zhang , Lin Geng , Hao Tian
{"title":"多尺度建筑钛基复合材料的优异抗蠕变性能:来自微尺度内应力的见解","authors":"Xin Chen ,&nbsp;Lujun Huang ,&nbsp;Shipeng Zhou ,&nbsp;Shaocong Xiong ,&nbsp;Yu Zhang ,&nbsp;Lin Geng ,&nbsp;Hao Tian","doi":"10.1016/j.coco.2025.102576","DOIUrl":null,"url":null,"abstract":"<div><div><em>The higher the internal stress, the lower the effective stress</em>. Increasing the internal resistance to dislocation motion is essential for improving the creep resistance of metallic materials. By introducing hybrid reinforcements and regulating their distributions, the multiscale architectural (TiB+(Ti,Zr)<sub>5</sub>Si<sub>3</sub>)/Ti55 composites exhibited superior creep resistance at 650 °C, with a rupture life of ∼189 h under 200 MPa. Utilizing stress-reduction and stress-compensation creep tests, the internal stress within the composites was proven to be ∼30 MPa higher than that within the alloys. Microstructural characterizations revealed that the enhanced internal stress originated from the modulus strengthening of reinforcements and the dislocation pile-up strengthening of substructures. Our findings provide a new perspective for understanding the improved creep resistance caused by compositing.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"59 ","pages":"Article 102576"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior creep resistance of multiscale architectural titanium matrix composites: Insights from microscale internal stress\",\"authors\":\"Xin Chen ,&nbsp;Lujun Huang ,&nbsp;Shipeng Zhou ,&nbsp;Shaocong Xiong ,&nbsp;Yu Zhang ,&nbsp;Lin Geng ,&nbsp;Hao Tian\",\"doi\":\"10.1016/j.coco.2025.102576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>The higher the internal stress, the lower the effective stress</em>. Increasing the internal resistance to dislocation motion is essential for improving the creep resistance of metallic materials. By introducing hybrid reinforcements and regulating their distributions, the multiscale architectural (TiB+(Ti,Zr)<sub>5</sub>Si<sub>3</sub>)/Ti55 composites exhibited superior creep resistance at 650 °C, with a rupture life of ∼189 h under 200 MPa. Utilizing stress-reduction and stress-compensation creep tests, the internal stress within the composites was proven to be ∼30 MPa higher than that within the alloys. Microstructural characterizations revealed that the enhanced internal stress originated from the modulus strengthening of reinforcements and the dislocation pile-up strengthening of substructures. Our findings provide a new perspective for understanding the improved creep resistance caused by compositing.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"59 \",\"pages\":\"Article 102576\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925003298\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925003298","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

内应力越高,有效应力越低。提高位错运动的内阻是提高金属材料抗蠕变性能的关键。通过引入杂化增强材料并调节其分布,多尺度结构(TiB+(Ti,Zr)5Si3)/Ti55复合材料在650℃下表现出优异的抗蠕变性能,在200 MPa下的断裂寿命为~ 189 h。利用应力减少和应力补偿蠕变试验,复合材料内部的内应力比合金内部的内应力高~ 30 MPa。显微组织表征表明,内应力的增强源于增强体的模量强化和亚结构的位错堆积强化。我们的发现为理解复合材料对抗蠕变性能的改善提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superior creep resistance of multiscale architectural titanium matrix composites: Insights from microscale internal stress
The higher the internal stress, the lower the effective stress. Increasing the internal resistance to dislocation motion is essential for improving the creep resistance of metallic materials. By introducing hybrid reinforcements and regulating their distributions, the multiscale architectural (TiB+(Ti,Zr)5Si3)/Ti55 composites exhibited superior creep resistance at 650 °C, with a rupture life of ∼189 h under 200 MPa. Utilizing stress-reduction and stress-compensation creep tests, the internal stress within the composites was proven to be ∼30 MPa higher than that within the alloys. Microstructural characterizations revealed that the enhanced internal stress originated from the modulus strengthening of reinforcements and the dislocation pile-up strengthening of substructures. Our findings provide a new perspective for understanding the improved creep resistance caused by compositing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信