关于逆一元群的半简单原阿贝尔范畴

IF 0.8 2区 数学 Q2 MATHEMATICS
Alexander Sistko
{"title":"关于逆一元群的半简单原阿贝尔范畴","authors":"Alexander Sistko","doi":"10.1016/j.jalgebra.2025.07.052","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite abelian group written multiplicatively, with <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mi>G</mi><mo>⊔</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, whose objects can be thought of as finite-dimensional vector spaces over <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. The class of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of finite-dimensional <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations of a <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoid <em>M</em>. Although this category is only a slight modification of the usual category of <em>M</em>-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of <em>M</em> are objects of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>, we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the <em>M</em> for which each non-zero object of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> is a direct sum of simple objects. When <em>M</em> is the endomorphism monoid of an object in <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, we discuss alternate frameworks for studying its <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations and contrast the various approaches.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 354-397"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semisimple proto-Abelian categories associated to inverse monoids\",\"authors\":\"Alexander Sistko\",\"doi\":\"10.1016/j.jalgebra.2025.07.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite abelian group written multiplicatively, with <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mi>G</mi><mo>⊔</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, whose objects can be thought of as finite-dimensional vector spaces over <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. The class of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of finite-dimensional <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations of a <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoid <em>M</em>. Although this category is only a slight modification of the usual category of <em>M</em>-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of <em>M</em> are objects of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>, we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the <em>M</em> for which each non-zero object of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> is a direct sum of simple objects. When <em>M</em> is the endomorphism monoid of an object in <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, we discuss alternate frameworks for studying its <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations and contrast the various approaches.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 354-397\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004855\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个乘式的有限阿贝尔群,其中G =G *{0}是由相邻的吸收元0形成的点阿贝尔群。有一个相关的有限的,原阿贝尔范畴,其对象可以被认为是G -上的有限维向量空间。然后根据这个范畴定义了G -线性模群的类。本文研究了一类G -线性模群M的有限维G -线性表示的有限的原阿贝尔范畴Rep(M,G -),尽管这一范畴只是M-模的通常范畴的一个轻微的修改,但它在有趣的类模群中表现出明显不同的行为。假设M的正则主因子是Rep(M,G})的对象,我们发展了clifford - munn - ponizovski定理的一个版本,并对Rep(M,G})的每个非零对象是简单对象的直接和的M进行了分类。当M是向量中的对象的自同态单阵时,我们讨论了研究其向量线性表示的替代框架,并比较了各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On semisimple proto-Abelian categories associated to inverse monoids
Let G be a finite abelian group written multiplicatively, with Gˆ=G{0} the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category VectGˆ, whose objects can be thought of as finite-dimensional vector spaces over Gˆ. The class of Gˆ-linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category Rep(M,Gˆ) of finite-dimensional Gˆ-linear representations of a Gˆ-linear monoid M. Although this category is only a slight modification of the usual category of M-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of M are objects of Rep(M,Gˆ), we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the M for which each non-zero object of Rep(M,Gˆ) is a direct sum of simple objects. When M is the endomorphism monoid of an object in VectGˆ, we discuss alternate frameworks for studying its Gˆ-linear representations and contrast the various approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信