{"title":"关于逆一元群的半简单原阿贝尔范畴","authors":"Alexander Sistko","doi":"10.1016/j.jalgebra.2025.07.052","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite abelian group written multiplicatively, with <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mi>G</mi><mo>⊔</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, whose objects can be thought of as finite-dimensional vector spaces over <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. The class of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of finite-dimensional <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations of a <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoid <em>M</em>. Although this category is only a slight modification of the usual category of <em>M</em>-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of <em>M</em> are objects of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>, we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the <em>M</em> for which each non-zero object of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> is a direct sum of simple objects. When <em>M</em> is the endomorphism monoid of an object in <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, we discuss alternate frameworks for studying its <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations and contrast the various approaches.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 354-397"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semisimple proto-Abelian categories associated to inverse monoids\",\"authors\":\"Alexander Sistko\",\"doi\":\"10.1016/j.jalgebra.2025.07.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite abelian group written multiplicatively, with <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mi>G</mi><mo>⊔</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, whose objects can be thought of as finite-dimensional vector spaces over <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. The class of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of finite-dimensional <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations of a <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear monoid <em>M</em>. Although this category is only a slight modification of the usual category of <em>M</em>-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of <em>M</em> are objects of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>, we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the <em>M</em> for which each non-zero object of <span><math><mi>Rep</mi><mo>(</mo><mi>M</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> is a direct sum of simple objects. When <em>M</em> is the endomorphism monoid of an object in <span><math><msub><mrow><mi>Vect</mi></mrow><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub></math></span>, we discuss alternate frameworks for studying its <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-linear representations and contrast the various approaches.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 354-397\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004855\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On semisimple proto-Abelian categories associated to inverse monoids
Let G be a finite abelian group written multiplicatively, with the pointed abelian group formed by adjoining an absorbing element 0. There is an associated finitary, proto-abelian category , whose objects can be thought of as finite-dimensional vector spaces over . The class of -linear monoids are then defined in terms of this category. In this paper, we study the finitary, proto-abelian category of finite-dimensional -linear representations of a -linear monoid M. Although this category is only a slight modification of the usual category of M-modules, it exhibits significantly different behavior for interesting classes of monoids. Assuming that the regular principal factors of M are objects of , we develop a version of the Clifford-Munn-Ponizovskiĭ Theorem and classify the M for which each non-zero object of is a direct sum of simple objects. When M is the endomorphism monoid of an object in , we discuss alternate frameworks for studying its -linear representations and contrast the various approaches.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.