关于多变量形式幂级数的代数闭包

IF 0.8 2区 数学 Q2 MATHEMATICS
Michel Hickel, Mickaël Matusinski
{"title":"关于多变量形式幂级数的代数闭包","authors":"Michel Hickel,&nbsp;Mickaël Matusinski","doi":"10.1016/j.jalgebra.2025.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be a field of characteristic zero. We deal with the algebraic closure of the field of fractions of the ring of formal power series <span><math><mi>K</mi><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>]</mo><mo>]</mo></math></span>, <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>. More precisely, we view the latter as a subfield of an iterated Puiseux series field <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>. On the one hand, given <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> which is algebraic, we provide an algorithm that reconstructs the space of all polynomials which annihilates <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> up to a certain order (arbitrarily high). On the other hand, given a polynomial <span><math><mi>P</mi><mo>∈</mo><mi>K</mi><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>]</mo><mo>]</mo><mo>[</mo><mi>y</mi><mo>]</mo></math></span> with simple roots, we derive a closed form formula for the coefficients of a root <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in terms of the coefficients of <em>P</em> and a fixed initial part of <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 263-353"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the algebraic closure of formal power series in several variables\",\"authors\":\"Michel Hickel,&nbsp;Mickaël Matusinski\",\"doi\":\"10.1016/j.jalgebra.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>K</em> be a field of characteristic zero. We deal with the algebraic closure of the field of fractions of the ring of formal power series <span><math><mi>K</mi><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>]</mo><mo>]</mo></math></span>, <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>. More precisely, we view the latter as a subfield of an iterated Puiseux series field <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>. On the one hand, given <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> which is algebraic, we provide an algorithm that reconstructs the space of all polynomials which annihilates <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> up to a certain order (arbitrarily high). On the other hand, given a polynomial <span><math><mi>P</mi><mo>∈</mo><mi>K</mi><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>]</mo><mo>]</mo><mo>[</mo><mi>y</mi><mo>]</mo></math></span> with simple roots, we derive a closed form formula for the coefficients of a root <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in terms of the coefficients of <em>P</em> and a fixed initial part of <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 263-353\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004739\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004739","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设K是特征为零的场。讨论了形式幂级数K[[x1,…,xr]], r≥2的环的分数域的代数闭包。更准确地说,我们将后者视为迭代Puiseux级数域Kr的子域。一方面,给定y0∈Kr是代数的,我们提供了一种算法,该算法重构了所有多项式的空间,这些多项式将y0湮灭到某一阶(任意高)。另一方面,给定一个具有单根的多项式P∈K[[x1,…,xr]][y],我们用P的系数和y0的固定初始部分导出了根y0的系数的封闭形式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the algebraic closure of formal power series in several variables
Let K be a field of characteristic zero. We deal with the algebraic closure of the field of fractions of the ring of formal power series K[[x1,,xr]], r2. More precisely, we view the latter as a subfield of an iterated Puiseux series field Kr. On the one hand, given y0Kr which is algebraic, we provide an algorithm that reconstructs the space of all polynomials which annihilates y0 up to a certain order (arbitrarily high). On the other hand, given a polynomial PK[[x1,,xr]][y] with simple roots, we derive a closed form formula for the coefficients of a root y0 in terms of the coefficients of P and a fixed initial part of y0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信