Omena Bernard Ojuederie , Ufuoma Lydia Akpojotor , Adetomiwa Ayodele Adeniji , Tina Chukwuyem Ojuederie , Jacob Olagbenro Popoola , Olubukola Oluranti Babalola
{"title":"未充分利用的豆科植物的比较基因组分析:对进化关系,基因组进化和胁迫耐受性的见解","authors":"Omena Bernard Ojuederie , Ufuoma Lydia Akpojotor , Adetomiwa Ayodele Adeniji , Tina Chukwuyem Ojuederie , Jacob Olagbenro Popoola , Olubukola Oluranti Babalola","doi":"10.1016/j.btre.2025.e00918","DOIUrl":null,"url":null,"abstract":"<div><div>African yam bean, Mung bean, and Winged bean, which are rich sources of nutrients and bioactive compounds, offer significant potential for food and nutrition security, yet they are underutilized. A comparative genomic analysis of these legumes with cowpea was conducted to unearth their molecular architecture and uncover their rich genomic profile. Protein and genomic fasta sequences were retrieved from the GenBank of the NCBI, and orthologous genes investigated, and secondary metabolites determined using OrthoVenn3 and PlantiSMASH programs. A total of 7761 single-copy and 20,250 unique genes were identified, which revealed their genetic diversity and conservation. Phylogenetic analysis showed the closest relationship between Cowpea and Mung bean, with Winged bean diverging significantly. Cowpea and Mung bean had significant gene expansions (+1051), while African yam bean (-864) and Winged bean (-643) had substantial gene losses. GO enrichment revealed the contributions to adaptations in the different legume species to biotic and abiotic stresses, highlighting their potential as climate-resilient crops. The highest protein gene (enzyme) count for saccharide (68) and terpene (18) biosynthesis was obtained in AYB. At the same time, mung bean had the highest gene clusters for alkaloids (10) and polyketides (5), and the highest enzyme count for the biosynthesis of alkaloids (32) and polyketides (17). Underutilized legumes exhibited higher essential amino acid levels compared to cowpea. These findings provide valuable insights for breeding programs and biotechnological interventions to improve the nutritional value and acceptance of these underutilized legumes, ultimately contributing to food and nutrition security.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"48 ","pages":"Article e00918"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative genomic analysis of underutilized legumes: insights into evolutionary relationships, genome evolution and stress tolerance\",\"authors\":\"Omena Bernard Ojuederie , Ufuoma Lydia Akpojotor , Adetomiwa Ayodele Adeniji , Tina Chukwuyem Ojuederie , Jacob Olagbenro Popoola , Olubukola Oluranti Babalola\",\"doi\":\"10.1016/j.btre.2025.e00918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>African yam bean, Mung bean, and Winged bean, which are rich sources of nutrients and bioactive compounds, offer significant potential for food and nutrition security, yet they are underutilized. A comparative genomic analysis of these legumes with cowpea was conducted to unearth their molecular architecture and uncover their rich genomic profile. Protein and genomic fasta sequences were retrieved from the GenBank of the NCBI, and orthologous genes investigated, and secondary metabolites determined using OrthoVenn3 and PlantiSMASH programs. A total of 7761 single-copy and 20,250 unique genes were identified, which revealed their genetic diversity and conservation. Phylogenetic analysis showed the closest relationship between Cowpea and Mung bean, with Winged bean diverging significantly. Cowpea and Mung bean had significant gene expansions (+1051), while African yam bean (-864) and Winged bean (-643) had substantial gene losses. GO enrichment revealed the contributions to adaptations in the different legume species to biotic and abiotic stresses, highlighting their potential as climate-resilient crops. The highest protein gene (enzyme) count for saccharide (68) and terpene (18) biosynthesis was obtained in AYB. At the same time, mung bean had the highest gene clusters for alkaloids (10) and polyketides (5), and the highest enzyme count for the biosynthesis of alkaloids (32) and polyketides (17). Underutilized legumes exhibited higher essential amino acid levels compared to cowpea. These findings provide valuable insights for breeding programs and biotechnological interventions to improve the nutritional value and acceptance of these underutilized legumes, ultimately contributing to food and nutrition security.</div></div>\",\"PeriodicalId\":38117,\"journal\":{\"name\":\"Biotechnology Reports\",\"volume\":\"48 \",\"pages\":\"Article e00918\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215017X25000451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Comparative genomic analysis of underutilized legumes: insights into evolutionary relationships, genome evolution and stress tolerance
African yam bean, Mung bean, and Winged bean, which are rich sources of nutrients and bioactive compounds, offer significant potential for food and nutrition security, yet they are underutilized. A comparative genomic analysis of these legumes with cowpea was conducted to unearth their molecular architecture and uncover their rich genomic profile. Protein and genomic fasta sequences were retrieved from the GenBank of the NCBI, and orthologous genes investigated, and secondary metabolites determined using OrthoVenn3 and PlantiSMASH programs. A total of 7761 single-copy and 20,250 unique genes were identified, which revealed their genetic diversity and conservation. Phylogenetic analysis showed the closest relationship between Cowpea and Mung bean, with Winged bean diverging significantly. Cowpea and Mung bean had significant gene expansions (+1051), while African yam bean (-864) and Winged bean (-643) had substantial gene losses. GO enrichment revealed the contributions to adaptations in the different legume species to biotic and abiotic stresses, highlighting their potential as climate-resilient crops. The highest protein gene (enzyme) count for saccharide (68) and terpene (18) biosynthesis was obtained in AYB. At the same time, mung bean had the highest gene clusters for alkaloids (10) and polyketides (5), and the highest enzyme count for the biosynthesis of alkaloids (32) and polyketides (17). Underutilized legumes exhibited higher essential amino acid levels compared to cowpea. These findings provide valuable insights for breeding programs and biotechnological interventions to improve the nutritional value and acceptance of these underutilized legumes, ultimately contributing to food and nutrition security.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.