{"title":"分层Mo/HTNU-9促进甲烷芳构化,减轻碳沉积","authors":"Jing Hu, Xiaodong Chen, Chunxue Yang, Jingjing Tian, Xin Kang, Xiaohui Wang, Jinglin Liu","doi":"10.1016/j.fuproc.2025.108323","DOIUrl":null,"url":null,"abstract":"<div><div>Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108323"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition\",\"authors\":\"Jing Hu, Xiaodong Chen, Chunxue Yang, Jingjing Tian, Xin Kang, Xiaohui Wang, Jinglin Liu\",\"doi\":\"10.1016/j.fuproc.2025.108323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"277 \",\"pages\":\"Article 108323\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838202500147X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202500147X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition
Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.