四边形圆柱和环面多米诺骨牌平铺的翻转图的分量

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Qianqian Liu , Jingfeng Wang , Chunmei Li , Heping Zhang
{"title":"四边形圆柱和环面多米诺骨牌平铺的翻转图的分量","authors":"Qianqian Liu ,&nbsp;Jingfeng Wang ,&nbsp;Chunmei Li ,&nbsp;Heping Zhang","doi":"10.1016/j.amc.2025.129697","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi></math></span> be a quadriculated surface, possibly with boundary, consisting of unit squares, and each interior vertex being surrounded by 4 squares. A tiling of <span><math><mi>R</mi></math></span> is a placement of dominoes (a pair of adjacent squares) so that there are no gaps or overlaps. The flip graph of <span><math><mi>R</mi></math></span> is a graph whose vertices are all tilings of <span><math><mi>R</mi></math></span> and two tilings are adjacent if we can obtain one from another by a flip (<span><math><msup><mn>90</mn><mo>∘</mo></msup></math></span> rotation of a pair of side-by-side dominoes). By using graph-theoretical approach, we prove that the flip graph of <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated cylinder is still connected, but that of <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated torus consists of two isomorphic components. For a tiling <span><math><mi>t</mi></math></span>, we associate an integer, called forcing number, as the minimum number of dominoes in <span><math><mi>t</mi></math></span> that is contained in no other tilings. As a consequence, we obtain that the forcing numbers of all tilings in <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated cylinder and torus form respectively an integer interval whose maximum value is <span><math><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>m</mi></mrow></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129697"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Components of flip graphs of domino tilings in quadriculated cylinder and torus\",\"authors\":\"Qianqian Liu ,&nbsp;Jingfeng Wang ,&nbsp;Chunmei Li ,&nbsp;Heping Zhang\",\"doi\":\"10.1016/j.amc.2025.129697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>R</mi></math></span> be a quadriculated surface, possibly with boundary, consisting of unit squares, and each interior vertex being surrounded by 4 squares. A tiling of <span><math><mi>R</mi></math></span> is a placement of dominoes (a pair of adjacent squares) so that there are no gaps or overlaps. The flip graph of <span><math><mi>R</mi></math></span> is a graph whose vertices are all tilings of <span><math><mi>R</mi></math></span> and two tilings are adjacent if we can obtain one from another by a flip (<span><math><msup><mn>90</mn><mo>∘</mo></msup></math></span> rotation of a pair of side-by-side dominoes). By using graph-theoretical approach, we prove that the flip graph of <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated cylinder is still connected, but that of <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated torus consists of two isomorphic components. For a tiling <span><math><mi>t</mi></math></span>, we associate an integer, called forcing number, as the minimum number of dominoes in <span><math><mi>t</mi></math></span> that is contained in no other tilings. As a consequence, we obtain that the forcing numbers of all tilings in <span><math><mrow><mn>2</mn><mi>m</mi><mo>×</mo><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> quadriculated cylinder and torus form respectively an integer interval whose maximum value is <span><math><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>m</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129697\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个四边形曲面,可能有边界,由单位正方形组成,每个内部顶点被4个正方形包围。R的平铺是多米诺骨牌(一对相邻的方块)的放置,这样就没有空隙或重叠。R的翻转图是这样一个图,它的顶点都是R的平铺,如果我们能通过翻转得到两个平铺是相邻的(90°旋转一对并排的多米诺骨牌)。利用图论方法,证明了2mx (2n+1)四边形柱面的翻转图仍然是连通的,而2mx (2n+1)四边形环面的翻转图由两个同构分量组成。对于一个平铺t,我们将一个整数,称为强制数,作为t中不包含在其他平铺中的最小多米诺骨牌数。结果表明,在2mx (2n+1)个四边形柱面和环面中,所有铺层的强迫数分别形成一个最大值为(n+1)m的整数区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Components of flip graphs of domino tilings in quadriculated cylinder and torus
Let R be a quadriculated surface, possibly with boundary, consisting of unit squares, and each interior vertex being surrounded by 4 squares. A tiling of R is a placement of dominoes (a pair of adjacent squares) so that there are no gaps or overlaps. The flip graph of R is a graph whose vertices are all tilings of R and two tilings are adjacent if we can obtain one from another by a flip (90 rotation of a pair of side-by-side dominoes). By using graph-theoretical approach, we prove that the flip graph of 2m×(2n+1) quadriculated cylinder is still connected, but that of 2m×(2n+1) quadriculated torus consists of two isomorphic components. For a tiling t, we associate an integer, called forcing number, as the minimum number of dominoes in t that is contained in no other tilings. As a consequence, we obtain that the forcing numbers of all tilings in 2m×(2n+1) quadriculated cylinder and torus form respectively an integer interval whose maximum value is (n+1)m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信