{"title":"基于JAYA算法的配电网太阳能和风能电动汽车充电站优化运行","authors":"Kushal Manohar Jagtap , Farhad Ilahi Bakhsh , Ramya Kuppusamy , Yuvaraja Teekaraman","doi":"10.1016/j.asej.2025.103712","DOIUrl":null,"url":null,"abstract":"<div><div>The inadequate additional burden of electric vehicle charging stations (EVCSs) and renewable energy resources (RERs) affects the techno-economic operations of distribution networks (DNs) negatively. This paper proposes a two-stage multi-objective optimization model for the secure and economic operations of DNs through integration of EVCSs and RERs. In stage 1, the power demands of EVCSs equipped with Level 1 (AC), Level 2 (AC), and Level 3 (DC) supply equipment are determined. This stage aims to ensure system stability and security while optimizing the energy fed to EVCSs to meet the power demand of EVs during charging. By following the network in stage 1, RERs in stage 2, especially solar and wind energy systems, are integrated with a focus on maximizing economic benefits. Simultaneously, the cost of power purchases from the grid by DN operators is minimized without affecting the stability and security of the network. Hourly fluctuations of electricity prices provided by the electricity market and contract prices of solar and wind energy systems are also taken into account in this stage to analyze their dynamic effect on the network performance. In both stages, voltage stability and voltage deviation tools are utilized to identify the most appropriate/suitable locations for EVCSs as well as solar and wind energy resources. The paper employs a single weight tree structure approach to handle the multi-objective optimization, as opposed to the traditional approach of converting multi-objectives into a single objective by using multiple weights. The proposed method is tested on 69-bus DN and optimum results are obtained by using the Modified JAYA algorithm. Obtained results are compared with those of traditional JAYA, Particle Swarm optimization and Differential Evolution algorithms.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 11","pages":"Article 103712"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal operation of electric vehicle charging stations with solar and wind energy systems in distribution network using JAYA algorithm\",\"authors\":\"Kushal Manohar Jagtap , Farhad Ilahi Bakhsh , Ramya Kuppusamy , Yuvaraja Teekaraman\",\"doi\":\"10.1016/j.asej.2025.103712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inadequate additional burden of electric vehicle charging stations (EVCSs) and renewable energy resources (RERs) affects the techno-economic operations of distribution networks (DNs) negatively. This paper proposes a two-stage multi-objective optimization model for the secure and economic operations of DNs through integration of EVCSs and RERs. In stage 1, the power demands of EVCSs equipped with Level 1 (AC), Level 2 (AC), and Level 3 (DC) supply equipment are determined. This stage aims to ensure system stability and security while optimizing the energy fed to EVCSs to meet the power demand of EVs during charging. By following the network in stage 1, RERs in stage 2, especially solar and wind energy systems, are integrated with a focus on maximizing economic benefits. Simultaneously, the cost of power purchases from the grid by DN operators is minimized without affecting the stability and security of the network. Hourly fluctuations of electricity prices provided by the electricity market and contract prices of solar and wind energy systems are also taken into account in this stage to analyze their dynamic effect on the network performance. In both stages, voltage stability and voltage deviation tools are utilized to identify the most appropriate/suitable locations for EVCSs as well as solar and wind energy resources. The paper employs a single weight tree structure approach to handle the multi-objective optimization, as opposed to the traditional approach of converting multi-objectives into a single objective by using multiple weights. The proposed method is tested on 69-bus DN and optimum results are obtained by using the Modified JAYA algorithm. Obtained results are compared with those of traditional JAYA, Particle Swarm optimization and Differential Evolution algorithms.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"16 11\",\"pages\":\"Article 103712\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447925004538\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925004538","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal operation of electric vehicle charging stations with solar and wind energy systems in distribution network using JAYA algorithm
The inadequate additional burden of electric vehicle charging stations (EVCSs) and renewable energy resources (RERs) affects the techno-economic operations of distribution networks (DNs) negatively. This paper proposes a two-stage multi-objective optimization model for the secure and economic operations of DNs through integration of EVCSs and RERs. In stage 1, the power demands of EVCSs equipped with Level 1 (AC), Level 2 (AC), and Level 3 (DC) supply equipment are determined. This stage aims to ensure system stability and security while optimizing the energy fed to EVCSs to meet the power demand of EVs during charging. By following the network in stage 1, RERs in stage 2, especially solar and wind energy systems, are integrated with a focus on maximizing economic benefits. Simultaneously, the cost of power purchases from the grid by DN operators is minimized without affecting the stability and security of the network. Hourly fluctuations of electricity prices provided by the electricity market and contract prices of solar and wind energy systems are also taken into account in this stage to analyze their dynamic effect on the network performance. In both stages, voltage stability and voltage deviation tools are utilized to identify the most appropriate/suitable locations for EVCSs as well as solar and wind energy resources. The paper employs a single weight tree structure approach to handle the multi-objective optimization, as opposed to the traditional approach of converting multi-objectives into a single objective by using multiple weights. The proposed method is tested on 69-bus DN and optimum results are obtained by using the Modified JAYA algorithm. Obtained results are compared with those of traditional JAYA, Particle Swarm optimization and Differential Evolution algorithms.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.