双端VO2介观结构中的低功率电阻开关

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
K.E. Kapoguzov , D.M. Milyushin , V.S. Tumashev , E.K. Bagochus , V.N. Kichay , L.V. Yakovkina , S.V. Mutilin
{"title":"双端VO2介观结构中的低功率电阻开关","authors":"K.E. Kapoguzov ,&nbsp;D.M. Milyushin ,&nbsp;V.S. Tumashev ,&nbsp;E.K. Bagochus ,&nbsp;V.N. Kichay ,&nbsp;L.V. Yakovkina ,&nbsp;S.V. Mutilin","doi":"10.1016/j.physb.2025.417765","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium dioxide (VO<sub>2</sub>) is a promising material for high-speed, energy-efficient nanoelectronic and nanophotonic devices due to its semiconductor–metal phase transition. In this study, we investigated resistive switching in a VO<sub>2</sub> mesostructures with varying contact widths. We showed that mesostructure formation significantly reduces the current flow area, heat dissipation and enhances the switching ratio compared to a solid film. At a contact width of 3 μm, the current jumped by ∼400 times, an order of magnitude greater than in the solid-film device, while the threshold switching power was ∼0.78 mW, also an order of magnitude lower. Moreover, reducing contact width in solid films caused current spreading over an area 2–10 times wider than the contact width, leading to unwanted thermal crosstalk in potential dense neuromorphic systems. We proposed mesostructure with contact widths less than 10 μm as an efficient approach to improving switching localization.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"716 ","pages":"Article 417765"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-power resistive switching in a two-terminal VO2 mesostructures\",\"authors\":\"K.E. Kapoguzov ,&nbsp;D.M. Milyushin ,&nbsp;V.S. Tumashev ,&nbsp;E.K. Bagochus ,&nbsp;V.N. Kichay ,&nbsp;L.V. Yakovkina ,&nbsp;S.V. Mutilin\",\"doi\":\"10.1016/j.physb.2025.417765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vanadium dioxide (VO<sub>2</sub>) is a promising material for high-speed, energy-efficient nanoelectronic and nanophotonic devices due to its semiconductor–metal phase transition. In this study, we investigated resistive switching in a VO<sub>2</sub> mesostructures with varying contact widths. We showed that mesostructure formation significantly reduces the current flow area, heat dissipation and enhances the switching ratio compared to a solid film. At a contact width of 3 μm, the current jumped by ∼400 times, an order of magnitude greater than in the solid-film device, while the threshold switching power was ∼0.78 mW, also an order of magnitude lower. Moreover, reducing contact width in solid films caused current spreading over an area 2–10 times wider than the contact width, leading to unwanted thermal crosstalk in potential dense neuromorphic systems. We proposed mesostructure with contact widths less than 10 μm as an efficient approach to improving switching localization.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"716 \",\"pages\":\"Article 417765\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625008828\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008828","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钒(VO2)由于其半导体-金属相变特性,在高速、高能效的纳米电子和纳米光子器件中具有广阔的应用前景。在这项研究中,我们研究了具有不同接触宽度的VO2介观结构中的电阻开关。我们发现,与固体薄膜相比,介观结构的形成显着减少了电流流过面积,散热并提高了开关比。在接触宽度为3 μm时,电流增加了~ 400倍,比固体薄膜器件增加了一个数量级,而阈值开关功率为~ 0.78 mW,也降低了一个数量级。此外,减小固体薄膜中的接触宽度会导致电流在比接触宽度宽2-10倍的区域上扩散,从而在电位密集的神经形态系统中导致不必要的热串扰。我们提出了接触宽度小于10 μm的介观结构作为提高开关定位的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-power resistive switching in a two-terminal VO2 mesostructures
Vanadium dioxide (VO2) is a promising material for high-speed, energy-efficient nanoelectronic and nanophotonic devices due to its semiconductor–metal phase transition. In this study, we investigated resistive switching in a VO2 mesostructures with varying contact widths. We showed that mesostructure formation significantly reduces the current flow area, heat dissipation and enhances the switching ratio compared to a solid film. At a contact width of 3 μm, the current jumped by ∼400 times, an order of magnitude greater than in the solid-film device, while the threshold switching power was ∼0.78 mW, also an order of magnitude lower. Moreover, reducing contact width in solid films caused current spreading over an area 2–10 times wider than the contact width, leading to unwanted thermal crosstalk in potential dense neuromorphic systems. We proposed mesostructure with contact widths less than 10 μm as an efficient approach to improving switching localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信