双面盖运动腔内热多孔椭圆柱体的混合对流:基于局部径向基函数的无网格方法

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Jiban Chowdhury, Y.V.S.S. Sanyasiraju
{"title":"双面盖运动腔内热多孔椭圆柱体的混合对流:基于局部径向基函数的无网格方法","authors":"Jiban Chowdhury,&nbsp;Y.V.S.S. Sanyasiraju","doi":"10.1016/j.ijthermalsci.2025.110254","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical investigation of unsteady, two-dimensional, laminar mixed convection flow of an incompressible, Newtonian fluid within a cavity with two-sided lid motion and a hot porous elliptical cylinder inserted inside. The opposing lid-driven motions induce flow within the cavity, while the high-temperature cylinder affects the flow dynamics. Flow through the porous cylinder is characterized using the Brinkman and Forchheimer corrected Darcy model, which incorporates the effects of the porous medium. The simulation employs the local radial basis function (RBF) based meshless technique to model the flow across the cavity. The developed model is validated against previously reported findings from both experimental data and conventional CFD approaches, with good agreement. Computed results are analyzed for various cavity inclination angles and ellipse orientations across a range of key parameters including the Richardson number <span><math><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>≤</mo><mi>R</mi><mi>i</mi><mo>≤</mo><mn>100</mn><mo>)</mo></mrow></math></span>, Darcy number <span><math><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo>≤</mo><mi>D</mi><mi>a</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> and Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>71</mn></mrow></math></span> for air and <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>9</mn></mrow></math></span> for water). To examine the impact of the chosen parameters, the results are presented in the form of streamlines, isotherms, velocity profiles, and plots of local and average Nusselt numbers. The numerical results suggest that, at a fixed Grashof number (<span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>), an increase in Richardson number (<span><math><mrow><mi>R</mi><mi>i</mi></mrow></math></span>) decreases the average Nusselt number (<span><math><mover><mrow><mtext>Nu</mtext></mrow><mo>¯</mo></mover></math></span>), while an increase in Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span>) increases <span><math><mover><mrow><mtext>Nu</mtext></mrow><mo>¯</mo></mover></math></span>, with the cavity inclination angle having a minimal effect on the convection rate. Overall, the local RBF scheme demonstrates its robustness and suitability for simulations in complex geometries with curved internal boundaries in mixed convection problems.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"219 ","pages":"Article 110254"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed convection flow through a hot porous elliptic cylinder in a cavity with two-sided lid motion: A local radial basis functions-based meshless approach\",\"authors\":\"Jiban Chowdhury,&nbsp;Y.V.S.S. Sanyasiraju\",\"doi\":\"10.1016/j.ijthermalsci.2025.110254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a numerical investigation of unsteady, two-dimensional, laminar mixed convection flow of an incompressible, Newtonian fluid within a cavity with two-sided lid motion and a hot porous elliptical cylinder inserted inside. The opposing lid-driven motions induce flow within the cavity, while the high-temperature cylinder affects the flow dynamics. Flow through the porous cylinder is characterized using the Brinkman and Forchheimer corrected Darcy model, which incorporates the effects of the porous medium. The simulation employs the local radial basis function (RBF) based meshless technique to model the flow across the cavity. The developed model is validated against previously reported findings from both experimental data and conventional CFD approaches, with good agreement. Computed results are analyzed for various cavity inclination angles and ellipse orientations across a range of key parameters including the Richardson number <span><math><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>≤</mo><mi>R</mi><mi>i</mi><mo>≤</mo><mn>100</mn><mo>)</mo></mrow></math></span>, Darcy number <span><math><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo>≤</mo><mi>D</mi><mi>a</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> and Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>71</mn></mrow></math></span> for air and <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>9</mn></mrow></math></span> for water). To examine the impact of the chosen parameters, the results are presented in the form of streamlines, isotherms, velocity profiles, and plots of local and average Nusselt numbers. The numerical results suggest that, at a fixed Grashof number (<span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>), an increase in Richardson number (<span><math><mrow><mi>R</mi><mi>i</mi></mrow></math></span>) decreases the average Nusselt number (<span><math><mover><mrow><mtext>Nu</mtext></mrow><mo>¯</mo></mover></math></span>), while an increase in Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span>) increases <span><math><mover><mrow><mtext>Nu</mtext></mrow><mo>¯</mo></mover></math></span>, with the cavity inclination angle having a minimal effect on the convection rate. Overall, the local RBF scheme demonstrates its robustness and suitability for simulations in complex geometries with curved internal boundaries in mixed convection problems.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"219 \",\"pages\":\"Article 110254\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925005770\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925005770","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文对不可压缩牛顿流体在具有双面盖运动和内插热多孔椭圆圆柱体的空腔内非定常二维层流混合对流流动进行了数值研究。相反的盖子驱动运动诱导腔内流动,而高温气缸影响流动动力学。采用Brinkman和Forchheimer修正的Darcy模型来表征多孔圆柱体的流动,该模型考虑了多孔介质的影响。仿真采用基于局部径向基函数(RBF)的无网格技术对腔内流动进行建模。该模型与先前报道的实验数据和传统CFD方法的结果进行了验证,结果吻合良好。在理查德森数(0.01≤Ri≤100)、达西数(10−6≤Da≤10−2)和普朗特数(空气Pr=0.71,水Pr=6.9)等关键参数范围内,对不同腔倾角和椭圆方向的计算结果进行了分析。为了检验所选参数的影响,结果以流线、等温线、速度剖面以及局部和平均努塞尔数图的形式呈现。数值结果表明,在一定的Grashof数(Gr)下,理查德森数(Ri)的增加使平均努塞尔数(Nu¯)减小,而达西数(Da)的增加使平均努¯增大,且腔倾角对对流速率的影响最小。总体而言,局部RBF方案对混合对流问题中具有弯曲内边界的复杂几何图形的模拟具有鲁棒性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed convection flow through a hot porous elliptic cylinder in a cavity with two-sided lid motion: A local radial basis functions-based meshless approach
This paper presents a numerical investigation of unsteady, two-dimensional, laminar mixed convection flow of an incompressible, Newtonian fluid within a cavity with two-sided lid motion and a hot porous elliptical cylinder inserted inside. The opposing lid-driven motions induce flow within the cavity, while the high-temperature cylinder affects the flow dynamics. Flow through the porous cylinder is characterized using the Brinkman and Forchheimer corrected Darcy model, which incorporates the effects of the porous medium. The simulation employs the local radial basis function (RBF) based meshless technique to model the flow across the cavity. The developed model is validated against previously reported findings from both experimental data and conventional CFD approaches, with good agreement. Computed results are analyzed for various cavity inclination angles and ellipse orientations across a range of key parameters including the Richardson number (0.01Ri100), Darcy number (106Da102) and Prandtl numbers (Pr=0.71 for air and Pr=6.9 for water). To examine the impact of the chosen parameters, the results are presented in the form of streamlines, isotherms, velocity profiles, and plots of local and average Nusselt numbers. The numerical results suggest that, at a fixed Grashof number (Gr), an increase in Richardson number (Ri) decreases the average Nusselt number (Nu¯), while an increase in Darcy number (Da) increases Nu¯, with the cavity inclination angle having a minimal effect on the convection rate. Overall, the local RBF scheme demonstrates its robustness and suitability for simulations in complex geometries with curved internal boundaries in mixed convection problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信