折叠超立方体的强匹配排除

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Zhicheng Lin, Ruizhi Lin
{"title":"折叠超立方体的强匹配排除","authors":"Zhicheng Lin,&nbsp;Ruizhi Lin","doi":"10.1016/j.dam.2025.08.045","DOIUrl":null,"url":null,"abstract":"<div><div>The strong matching preclusion number of <span><math><mi>G</mi></math></span> is the minimum number of vertices and edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. This concept was introduced by Park and Son to extending the classic matching preclusion problem. In this paper, we focus on strong matching preclusion for folded hypercube <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, an important variant of hypercube. We show that strong matching preclusion number of <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> for even <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>4</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 594-601"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong matching preclusion for folded hypercubes\",\"authors\":\"Zhicheng Lin,&nbsp;Ruizhi Lin\",\"doi\":\"10.1016/j.dam.2025.08.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The strong matching preclusion number of <span><math><mi>G</mi></math></span> is the minimum number of vertices and edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. This concept was introduced by Park and Son to extending the classic matching preclusion problem. In this paper, we focus on strong matching preclusion for folded hypercube <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, an important variant of hypercube. We show that strong matching preclusion number of <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> for even <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>4</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 594-601\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004834\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004834","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

G的强匹配排除数是指删除后的图得不到完美匹配或几乎完美匹配的顶点和边的最小数量。这个概念是由Park和Son引入的,用于扩展经典的匹配排除问题。本文研究了折叠超立方体FQn的强匹配排除问题,它是超立方体的一个重要变体。我们表明,即使n大于或等于n大于或等于4,FQn的强匹配排除数为n+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong matching preclusion for folded hypercubes
The strong matching preclusion number of G is the minimum number of vertices and edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. This concept was introduced by Park and Son to extending the classic matching preclusion problem. In this paper, we focus on strong matching preclusion for folded hypercube FQn, an important variant of hypercube. We show that strong matching preclusion number of FQn is n+1 for even n4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信