Awal Adava Abdulsalam , Madina Pirman , Dilnaz Begenova , George Z. Kyzas , Dehua Xia , Tri Thanh Pham , Boris Golman , Stavros G. Poulopoulos
{"title":"硫醇功能化高岭土颗粒:开发和优化从水溶液中去除汞离子","authors":"Awal Adava Abdulsalam , Madina Pirman , Dilnaz Begenova , George Z. Kyzas , Dehua Xia , Tri Thanh Pham , Boris Golman , Stavros G. Poulopoulos","doi":"10.1016/j.clay.2025.107983","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury contamination in aqueous media poses a severe environmental and health risk due to its high toxicity and bioaccumulation potential. In this study, a novel thiol-grafted kaolin pellet adsorbent was developed for efficient Hg<sup>2+</sup> remediation. The pellet production involved a combination of acid-base treatment, 3-mercaptopropyltrimethoxysilane grafting, and extrusion with polyvinyl alcohol serving as a binder. Additionally, a novel approach was developed to assess biofilm formation on the produced pellets. Characterization results confirmed the successful grafting of thiol groups, providing high-affinity binding sites for Hg<sup>2+</sup> ions. Optimal operating conditions were identified using 2-mm pellets, 1.5 wt% PVA, 5 g/L dosage, and an initial solution pH of 5, achieving 74.2 % removal and adsorption capacities of up to 12.5 mg/g at 313 K. Kinetic studies revealed that Hg<sup>2+</sup> uptake followed a pseudo-second-order model (R<sup>2</sup> = 0.986), while isotherm studies indicated the Freundlich model (R<sup>2</sup> = 0.987, 0.993, and 0.997 for 293, 303, and 313 K, respectively) as the best model. Antibacterial assays demonstrated that raw and acid-base-treated kaolin pellets inhibited biofilm formation for <em>E. coli (BL21)</em>, <em>P. aeruginosa</em>, <em>S. epidermidis</em>, and <em>S. aureus</em>, whereas thiol-grafted pellets promoted biofilm development, highlighting the need to balance adsorptive enhancement with potential microbial colonization. These findings confirm the potential of kaolin-based pellet adsorbents for Hg<sup>2+</sup> remediation, offering a viable framework for scaling up into industrial applications.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"277 ","pages":"Article 107983"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiol functionalized kaolin pellets: Development and optimization for mercury ion removal from aqueous solutions\",\"authors\":\"Awal Adava Abdulsalam , Madina Pirman , Dilnaz Begenova , George Z. Kyzas , Dehua Xia , Tri Thanh Pham , Boris Golman , Stavros G. Poulopoulos\",\"doi\":\"10.1016/j.clay.2025.107983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mercury contamination in aqueous media poses a severe environmental and health risk due to its high toxicity and bioaccumulation potential. In this study, a novel thiol-grafted kaolin pellet adsorbent was developed for efficient Hg<sup>2+</sup> remediation. The pellet production involved a combination of acid-base treatment, 3-mercaptopropyltrimethoxysilane grafting, and extrusion with polyvinyl alcohol serving as a binder. Additionally, a novel approach was developed to assess biofilm formation on the produced pellets. Characterization results confirmed the successful grafting of thiol groups, providing high-affinity binding sites for Hg<sup>2+</sup> ions. Optimal operating conditions were identified using 2-mm pellets, 1.5 wt% PVA, 5 g/L dosage, and an initial solution pH of 5, achieving 74.2 % removal and adsorption capacities of up to 12.5 mg/g at 313 K. Kinetic studies revealed that Hg<sup>2+</sup> uptake followed a pseudo-second-order model (R<sup>2</sup> = 0.986), while isotherm studies indicated the Freundlich model (R<sup>2</sup> = 0.987, 0.993, and 0.997 for 293, 303, and 313 K, respectively) as the best model. Antibacterial assays demonstrated that raw and acid-base-treated kaolin pellets inhibited biofilm formation for <em>E. coli (BL21)</em>, <em>P. aeruginosa</em>, <em>S. epidermidis</em>, and <em>S. aureus</em>, whereas thiol-grafted pellets promoted biofilm development, highlighting the need to balance adsorptive enhancement with potential microbial colonization. These findings confirm the potential of kaolin-based pellet adsorbents for Hg<sup>2+</sup> remediation, offering a viable framework for scaling up into industrial applications.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"277 \",\"pages\":\"Article 107983\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131725002881\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725002881","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thiol functionalized kaolin pellets: Development and optimization for mercury ion removal from aqueous solutions
Mercury contamination in aqueous media poses a severe environmental and health risk due to its high toxicity and bioaccumulation potential. In this study, a novel thiol-grafted kaolin pellet adsorbent was developed for efficient Hg2+ remediation. The pellet production involved a combination of acid-base treatment, 3-mercaptopropyltrimethoxysilane grafting, and extrusion with polyvinyl alcohol serving as a binder. Additionally, a novel approach was developed to assess biofilm formation on the produced pellets. Characterization results confirmed the successful grafting of thiol groups, providing high-affinity binding sites for Hg2+ ions. Optimal operating conditions were identified using 2-mm pellets, 1.5 wt% PVA, 5 g/L dosage, and an initial solution pH of 5, achieving 74.2 % removal and adsorption capacities of up to 12.5 mg/g at 313 K. Kinetic studies revealed that Hg2+ uptake followed a pseudo-second-order model (R2 = 0.986), while isotherm studies indicated the Freundlich model (R2 = 0.987, 0.993, and 0.997 for 293, 303, and 313 K, respectively) as the best model. Antibacterial assays demonstrated that raw and acid-base-treated kaolin pellets inhibited biofilm formation for E. coli (BL21), P. aeruginosa, S. epidermidis, and S. aureus, whereas thiol-grafted pellets promoted biofilm development, highlighting the need to balance adsorptive enhancement with potential microbial colonization. These findings confirm the potential of kaolin-based pellet adsorbents for Hg2+ remediation, offering a viable framework for scaling up into industrial applications.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...