{"title":"天然盱眙县坡高岭土原位转化为纳米结构K-Ca-Fe-Mg/SAPO-34分子筛以增强MTO催化性能","authors":"Haizhou Tian , Jianghui Tao , Zheng Wang","doi":"10.1016/j.clay.2025.107982","DOIUrl":null,"url":null,"abstract":"<div><div>A nano-structured K-Ca-Fe-Mg/SAPO-34 (MeAPSO-34) composite catalyst was successfully synthesized through the in-situ transformation of palygorskite (Pal) under steam-assisted crystallization conditions. Pal served as a multifunctional precursor, providing inherent Si, Al, Fe, Mg, K, and Ca elements that were directly incorporated into the catalyst framework without the addition of external metal sources. This approach facilitated the formation of hierarchically porous SAPO-34 zeolites with a well-balanced distribution of Brønsted and Lewis acid sites, as confirmed by comprehensive characterization techniques including XRD, SEM, BET, XPS, and NH<sub>3</sub>-TPD. Complete methanol conversion was achieved over the MeAPSO-34 zeolite catalyst, with ethylene and propylene selectivities of 69.0 % and 27.4 %, respectively, at a reaction temperature of 410 °C, a methanol-to-water feed ratio of 1:6, and a weight hourly space velocity (WHSV) of 1 h<sup>−1</sup>. Notably, the synergistic interaction among the K, Ca, Fe, and Mg multi-metallic components significantly promoted the water-gas shift reaction and effectively suppressed coke deposition. Furthermore, the nanostructured morphology of the catalyst reduced the diffusion limitations by shortening the gas-phase transport pathways, thereby enhancing the overall catalytic performance of the SAPO-34 zeolite. This study presents a scalable strategy for designing high-performance methanol-to-olefin (MTO) catalysts through the direct transformation of clay minerals into nanostructured multifunctional materials.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"277 ","pages":"Article 107982"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ transformation of a natural Xuyi palygorskite into nano-structured K-Ca-Fe-Mg/SAPO-34 zeolites for enhanced MTO catalytic performance\",\"authors\":\"Haizhou Tian , Jianghui Tao , Zheng Wang\",\"doi\":\"10.1016/j.clay.2025.107982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A nano-structured K-Ca-Fe-Mg/SAPO-34 (MeAPSO-34) composite catalyst was successfully synthesized through the in-situ transformation of palygorskite (Pal) under steam-assisted crystallization conditions. Pal served as a multifunctional precursor, providing inherent Si, Al, Fe, Mg, K, and Ca elements that were directly incorporated into the catalyst framework without the addition of external metal sources. This approach facilitated the formation of hierarchically porous SAPO-34 zeolites with a well-balanced distribution of Brønsted and Lewis acid sites, as confirmed by comprehensive characterization techniques including XRD, SEM, BET, XPS, and NH<sub>3</sub>-TPD. Complete methanol conversion was achieved over the MeAPSO-34 zeolite catalyst, with ethylene and propylene selectivities of 69.0 % and 27.4 %, respectively, at a reaction temperature of 410 °C, a methanol-to-water feed ratio of 1:6, and a weight hourly space velocity (WHSV) of 1 h<sup>−1</sup>. Notably, the synergistic interaction among the K, Ca, Fe, and Mg multi-metallic components significantly promoted the water-gas shift reaction and effectively suppressed coke deposition. Furthermore, the nanostructured morphology of the catalyst reduced the diffusion limitations by shortening the gas-phase transport pathways, thereby enhancing the overall catalytic performance of the SAPO-34 zeolite. This study presents a scalable strategy for designing high-performance methanol-to-olefin (MTO) catalysts through the direct transformation of clay minerals into nanostructured multifunctional materials.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"277 \",\"pages\":\"Article 107982\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016913172500287X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172500287X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In-situ transformation of a natural Xuyi palygorskite into nano-structured K-Ca-Fe-Mg/SAPO-34 zeolites for enhanced MTO catalytic performance
A nano-structured K-Ca-Fe-Mg/SAPO-34 (MeAPSO-34) composite catalyst was successfully synthesized through the in-situ transformation of palygorskite (Pal) under steam-assisted crystallization conditions. Pal served as a multifunctional precursor, providing inherent Si, Al, Fe, Mg, K, and Ca elements that were directly incorporated into the catalyst framework without the addition of external metal sources. This approach facilitated the formation of hierarchically porous SAPO-34 zeolites with a well-balanced distribution of Brønsted and Lewis acid sites, as confirmed by comprehensive characterization techniques including XRD, SEM, BET, XPS, and NH3-TPD. Complete methanol conversion was achieved over the MeAPSO-34 zeolite catalyst, with ethylene and propylene selectivities of 69.0 % and 27.4 %, respectively, at a reaction temperature of 410 °C, a methanol-to-water feed ratio of 1:6, and a weight hourly space velocity (WHSV) of 1 h−1. Notably, the synergistic interaction among the K, Ca, Fe, and Mg multi-metallic components significantly promoted the water-gas shift reaction and effectively suppressed coke deposition. Furthermore, the nanostructured morphology of the catalyst reduced the diffusion limitations by shortening the gas-phase transport pathways, thereby enhancing the overall catalytic performance of the SAPO-34 zeolite. This study presents a scalable strategy for designing high-performance methanol-to-olefin (MTO) catalysts through the direct transformation of clay minerals into nanostructured multifunctional materials.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...