Lebesgue-Bochner与Besov空间线性群的同伦类型

IF 1.6 2区 数学 Q1 MATHEMATICS
Marat Pliev , Fedor Sukochev , Anna Tomskova
{"title":"Lebesgue-Bochner与Besov空间线性群的同伦类型","authors":"Marat Pliev ,&nbsp;Fedor Sukochev ,&nbsp;Anna Tomskova","doi":"10.1016/j.jfa.2025.111178","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> of the Lebesgue–Bochner space <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are both considered on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and for a reflexive symmetric sequence space <em>E</em> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the space of <em>p</em>-summable sequences and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of <em>E</em> spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span>. We conclude with few open problems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111178"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The homotopy type of the linear group of Lebesgue–Bochner and Besov spaces\",\"authors\":\"Marat Pliev ,&nbsp;Fedor Sukochev ,&nbsp;Anna Tomskova\",\"doi\":\"10.1016/j.jfa.2025.111178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> of the Lebesgue–Bochner space <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are both considered on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and for a reflexive symmetric sequence space <em>E</em> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the space of <em>p</em>-summable sequences and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of <em>E</em> spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span>. We conclude with few open problems.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111178\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500360X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500360X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一些Banach空间的线性群的同调性质。我们的第一个主要结果表明,对于1<;p,q<∞,Lebesgue - bochner空间Lp(Lq)的线性群GL(Lp(Lq))可压缩到一个点,其中Lp和Lq都被认为是在[0,1]上配备了标准Lebesgue测度。这一结果的证明是基于从umd空间的几何绘制的技术。此外,我们建立了一般线性群L1(Lp)和L∞(Lq), 1<p,q<;∞的点的可缩并性。证明是基于从向量值Köthe空间理论中得出的技术。我们还证明了对于1<;p<;∞和对于一个自反对称序列空间E,线性群GL(l_p (E))是可缩并到一个点,其中l_p是p可和序列的空间,l_p (E)是E空间的l_p和。作为后一个结果的结果,我们推导出Besov空间的线性群Bps,q, 1<p,q<∞,s>;0的可缩并性。最后,我们提出了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The homotopy type of the linear group of Lebesgue–Bochner and Besov spaces
In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for 1<p,q< the linear group GL(Lp(Lq)) of the Lebesgue–Bochner space Lp(Lq) is contractible to a point, where Lp and Lq are both considered on [0,1] equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of L1(Lp) and L(Lq), 1<p,q<. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for 1<p< and for a reflexive symmetric sequence space E the linear group GL(p(E)) is contractible to a point, where p is the space of p-summable sequences and p(E) is the p-sum of E spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space Bps,q, 1<p,q<, s>0. We conclude with few open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信