不规则区域内Navier-Stokes方程的部分边界正则性

IF 1.6 2区 数学 Q1 MATHEMATICS
Dominic Breit
{"title":"不规则区域内Navier-Stokes方程的部分边界正则性","authors":"Dominic Breit","doi":"10.1016/j.jfa.2025.111188","DOIUrl":null,"url":null,"abstract":"<div><div>We prove partial regularity of suitable weak solutions to the Navier–Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary which belongs to the fractional Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>,</mo><mi>p</mi></mrow></msup></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>15</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. The same result was previously only known under the much stronger assumption of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-boundary.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111188"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial boundary regularity for the Navier–Stokes equations in irregular domains\",\"authors\":\"Dominic Breit\",\"doi\":\"10.1016/j.jfa.2025.111188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove partial regularity of suitable weak solutions to the Navier–Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary which belongs to the fractional Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>,</mo><mi>p</mi></mrow></msup></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>15</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. The same result was previously only known under the much stronger assumption of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-boundary.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111188\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003702\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003702","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了在不规则区域边界处Navier-Stokes方程适当弱解的部分正则性。特别地,我们提供了速度场在边界点上连续的判据,并得到了在a.a.边界点上连续的解(它们的存在是Stokes方程在最小正则域上的一个新的极大正则性结果的结果)。我们假设我们有一个Lipschitz边界,它属于分数Sobolev空间W2−1/p,p对于某些p>;154。同样的结果以前只在更强的c2边界假设下才知道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial boundary regularity for the Navier–Stokes equations in irregular domains
We prove partial regularity of suitable weak solutions to the Navier–Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary which belongs to the fractional Sobolev space W21/p,p for some p>154. The same result was previously only known under the much stronger assumption of a C2-boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信