{"title":"与ω(q)相关的最小部分函数的同余","authors":"Renrong Mao","doi":"10.1016/j.jcta.2025.106106","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the smallest parts function associated with <span><math><mi>ω</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo 5 are first obtained by Andrews, Dixit and Yee. Later, Wang and Yang established two families of congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of 5. More recently, Smoot provided another proof of these congruences and both of the two proofs utilize the Atkin operator <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. In this paper, applying the Hecke operators, we obtain congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of primes <span><math><mi>ℓ</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106106"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences for the smallest parts function associated with ω(q)\",\"authors\":\"Renrong Mao\",\"doi\":\"10.1016/j.jcta.2025.106106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the smallest parts function associated with <span><math><mi>ω</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo 5 are first obtained by Andrews, Dixit and Yee. Later, Wang and Yang established two families of congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of 5. More recently, Smoot provided another proof of these congruences and both of the two proofs utilize the Atkin operator <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. In this paper, applying the Hecke operators, we obtain congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of primes <span><math><mi>ℓ</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106106\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525001013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Congruences for the smallest parts function associated with ω(q)
Let denote the smallest parts function associated with . Congruences for modulo 5 are first obtained by Andrews, Dixit and Yee. Later, Wang and Yang established two families of congruences for modulo powers of 5. More recently, Smoot provided another proof of these congruences and both of the two proofs utilize the Atkin operator . In this paper, applying the Hecke operators, we obtain congruences for modulo powers of primes .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.