Michael Katz, Hadas Cohen-Dvashi, Sarah Borni, John Ruedas, Greg Henkel, Ken McCormack, Ron Diskin
{"title":"ph诱导的拉沙病毒刺突复合体的构象变化和抑制","authors":"Michael Katz, Hadas Cohen-Dvashi, Sarah Borni, John Ruedas, Greg Henkel, Ken McCormack, Ron Diskin","doi":"10.1016/j.chom.2025.07.020","DOIUrl":null,"url":null,"abstract":"Lassa virus (LASV) is a devastating human pathogen with no vaccines and limited therapeutics. The LASV class-I spike complex engages target cells via binding its primary host receptor, matriglycan, followed by macropinocytosis and binding of its secondary receptor, lysosomal-associated membrane protein 1 (LAMP1), to trigger virus fusion. This process occurs across multiple pH-dependent steps, but the molecular events remain largely unknown. Through high-resolution structures, we study the pH-induced conformational changes of the spike preceding membrane fusion. We reveal pH-sensitive metal coordination sites that control the integrity of the spike's native state, elucidate a reorganization of the spike's transmembrane region, and provide a mechanism for dissociation from its primary receptor. Using the entry inhibitor ARN-75039, we validate our findings and establish the molecular basis for the binding and function of this investigational drug. These data define the molecular basis for the cell entry of LASV and will promote efforts in combating this virus and potentially related viral pathogens.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"91 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-induced conformational changes and inhibition of the Lassa virus spike complex\",\"authors\":\"Michael Katz, Hadas Cohen-Dvashi, Sarah Borni, John Ruedas, Greg Henkel, Ken McCormack, Ron Diskin\",\"doi\":\"10.1016/j.chom.2025.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lassa virus (LASV) is a devastating human pathogen with no vaccines and limited therapeutics. The LASV class-I spike complex engages target cells via binding its primary host receptor, matriglycan, followed by macropinocytosis and binding of its secondary receptor, lysosomal-associated membrane protein 1 (LAMP1), to trigger virus fusion. This process occurs across multiple pH-dependent steps, but the molecular events remain largely unknown. Through high-resolution structures, we study the pH-induced conformational changes of the spike preceding membrane fusion. We reveal pH-sensitive metal coordination sites that control the integrity of the spike's native state, elucidate a reorganization of the spike's transmembrane region, and provide a mechanism for dissociation from its primary receptor. Using the entry inhibitor ARN-75039, we validate our findings and establish the molecular basis for the binding and function of this investigational drug. These data define the molecular basis for the cell entry of LASV and will promote efforts in combating this virus and potentially related viral pathogens.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2025.07.020\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.07.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
pH-induced conformational changes and inhibition of the Lassa virus spike complex
Lassa virus (LASV) is a devastating human pathogen with no vaccines and limited therapeutics. The LASV class-I spike complex engages target cells via binding its primary host receptor, matriglycan, followed by macropinocytosis and binding of its secondary receptor, lysosomal-associated membrane protein 1 (LAMP1), to trigger virus fusion. This process occurs across multiple pH-dependent steps, but the molecular events remain largely unknown. Through high-resolution structures, we study the pH-induced conformational changes of the spike preceding membrane fusion. We reveal pH-sensitive metal coordination sites that control the integrity of the spike's native state, elucidate a reorganization of the spike's transmembrane region, and provide a mechanism for dissociation from its primary receptor. Using the entry inhibitor ARN-75039, we validate our findings and establish the molecular basis for the binding and function of this investigational drug. These data define the molecular basis for the cell entry of LASV and will promote efforts in combating this virus and potentially related viral pathogens.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.