丝状真菌控制多孔介质中的多相流动和流体分布

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Sang Hyun Lee, Marcel Moura, Shreya Srivastava, Cara Santelli, Peter K. Kang
{"title":"丝状真菌控制多孔介质中的多相流动和流体分布","authors":"Sang Hyun Lee, Marcel Moura, Shreya Srivastava, Cara Santelli, Peter K. Kang","doi":"10.1038/s41567-025-03020-6","DOIUrl":null,"url":null,"abstract":"<p>Filamentous fungi play crucial roles in global carbon and nutrient cycling, soil carbon sequestration, agricultural soil management, contaminant fate and transport, biofouling of engineered materials and human health. Although these processes typically involve multiple fluid phases in porous media, the mechanisms by which fungi regulate fluid flow remain poorly understood, limiting our ability to predict and harness fungus-mediated processes. The complexity and opacity of porous media further obscure our understanding of how fungi influence fluid flow and distribution. Here we explore the impact of filamentous fungi on multiphase flow and fluid redistribution using a dual-porosity microfluidic chip, featuring a flow channel embedded within tight porous media. Our pore-scale visualizations show that filamentous fungi can actively induce multiphase flow and mobilize trapped fluid phases in porous media through localized clogging and hyphal-induced pore invasion, enhancing the oil–water interfacial area and redistribution of fluid phases. This study reveals the mechanisms by which filamentous fungi modulate fluid flow and distribution, offering insights into harnessing fungal processes to enhance applications such as bioremediation and carbon sequestration.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"18 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filamentous fungi control multiphase flow and fluid distribution in porous media\",\"authors\":\"Sang Hyun Lee, Marcel Moura, Shreya Srivastava, Cara Santelli, Peter K. Kang\",\"doi\":\"10.1038/s41567-025-03020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Filamentous fungi play crucial roles in global carbon and nutrient cycling, soil carbon sequestration, agricultural soil management, contaminant fate and transport, biofouling of engineered materials and human health. Although these processes typically involve multiple fluid phases in porous media, the mechanisms by which fungi regulate fluid flow remain poorly understood, limiting our ability to predict and harness fungus-mediated processes. The complexity and opacity of porous media further obscure our understanding of how fungi influence fluid flow and distribution. Here we explore the impact of filamentous fungi on multiphase flow and fluid redistribution using a dual-porosity microfluidic chip, featuring a flow channel embedded within tight porous media. Our pore-scale visualizations show that filamentous fungi can actively induce multiphase flow and mobilize trapped fluid phases in porous media through localized clogging and hyphal-induced pore invasion, enhancing the oil–water interfacial area and redistribution of fluid phases. This study reveals the mechanisms by which filamentous fungi modulate fluid flow and distribution, offering insights into harnessing fungal processes to enhance applications such as bioremediation and carbon sequestration.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-03020-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-03020-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

丝状真菌在全球碳和养分循环、土壤碳固存、农业土壤管理、污染物命运和运输、工程材料的生物污染和人类健康等方面发挥着至关重要的作用。尽管这些过程通常涉及多孔介质中的多个流体相,但真菌调节流体流动的机制仍然知之甚少,这限制了我们预测和利用真菌介导过程的能力。多孔介质的复杂性和不透明性进一步模糊了我们对真菌如何影响流体流动和分布的理解。在这里,我们利用双孔微流控芯片探索丝状真菌对多相流动和流体再分配的影响,该芯片的特点是在致密多孔介质中嵌入一个流动通道。我们的孔隙尺度可视化显示,丝状真菌可以通过局部堵塞和菌丝诱导的孔隙侵入,积极诱导多孔介质中的多相流动,调动被困流体相,增加油水界面面积和流体相的重新分配。本研究揭示了丝状真菌调节流体流动和分布的机制,为利用真菌过程增强生物修复和碳封存等应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Filamentous fungi control multiphase flow and fluid distribution in porous media

Filamentous fungi control multiphase flow and fluid distribution in porous media

Filamentous fungi play crucial roles in global carbon and nutrient cycling, soil carbon sequestration, agricultural soil management, contaminant fate and transport, biofouling of engineered materials and human health. Although these processes typically involve multiple fluid phases in porous media, the mechanisms by which fungi regulate fluid flow remain poorly understood, limiting our ability to predict and harness fungus-mediated processes. The complexity and opacity of porous media further obscure our understanding of how fungi influence fluid flow and distribution. Here we explore the impact of filamentous fungi on multiphase flow and fluid redistribution using a dual-porosity microfluidic chip, featuring a flow channel embedded within tight porous media. Our pore-scale visualizations show that filamentous fungi can actively induce multiphase flow and mobilize trapped fluid phases in porous media through localized clogging and hyphal-induced pore invasion, enhancing the oil–water interfacial area and redistribution of fluid phases. This study reveals the mechanisms by which filamentous fungi modulate fluid flow and distribution, offering insights into harnessing fungal processes to enhance applications such as bioremediation and carbon sequestration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信