量子退火炉中的量子遍历性和置乱

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Manuel H Muñoz-Arias and Pablo M Poggi
{"title":"量子退火炉中的量子遍历性和置乱","authors":"Manuel H Muñoz-Arias and Pablo M Poggi","doi":"10.1088/2058-9565/adfc08","DOIUrl":null,"url":null,"abstract":"Quantum annealers play a major role in the ongoing development of quantum information processing and in the advent of quantum technologies. Their functioning is underpinned by the many-body adiabatic evolution connecting the ground state of a simple system to that of an interacting classical Hamiltonian which encodes the solution to an optimization problem. Here we explore more general properties of the dynamics of quantum annealers, going beyond the low-energy regime. We show that the unitary evolution operator describing the complete dynamics is typically highly quantum chaotic. As a result, the annealing dynamics naturally leads to volume-law entangled random-like states when the initial configuration is rotated away from the low-energy subspace. Furthermore, we observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling. In contrast, we find that when the annealing schedule is returned to the initial configuration (i.e. via a cyclic ramp), a subtle interplay between chaos and adiabaticity emerges, and the dynamics shows strong deviations from full ergodicity.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum ergodicity and scrambling in quantum annealers\",\"authors\":\"Manuel H Muñoz-Arias and Pablo M Poggi\",\"doi\":\"10.1088/2058-9565/adfc08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum annealers play a major role in the ongoing development of quantum information processing and in the advent of quantum technologies. Their functioning is underpinned by the many-body adiabatic evolution connecting the ground state of a simple system to that of an interacting classical Hamiltonian which encodes the solution to an optimization problem. Here we explore more general properties of the dynamics of quantum annealers, going beyond the low-energy regime. We show that the unitary evolution operator describing the complete dynamics is typically highly quantum chaotic. As a result, the annealing dynamics naturally leads to volume-law entangled random-like states when the initial configuration is rotated away from the low-energy subspace. Furthermore, we observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling. In contrast, we find that when the annealing schedule is returned to the initial configuration (i.e. via a cyclic ramp), a subtle interplay between chaos and adiabaticity emerges, and the dynamics shows strong deviations from full ergodicity.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adfc08\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adfc08","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子退火炉在量子信息处理的持续发展和量子技术的出现中发挥着重要作用。它们的功能是由多体绝热演化支撑的,它将一个简单系统的基态与一个相互作用的经典哈密顿函数的基态连接起来,后者编码了一个优化问题的解。在这里,我们探索量子退火动力学的更一般的性质,超越了低能状态。我们证明了描述完整动力学的酉演化算子是典型的高度量子混沌。因此,当初始构型远离低能子空间旋转时,退火动力学自然导致体积律纠缠随机态。此外,我们观察到量子退火的海森堡动力学导致广泛的算子扩展,这是量子信息混乱的标志。相反,我们发现当退火程序返回到初始配置(即通过循环斜坡)时,混沌和绝热之间出现了微妙的相互作用,并且动力学显示出与完全遍历性的强烈偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum ergodicity and scrambling in quantum annealers
Quantum annealers play a major role in the ongoing development of quantum information processing and in the advent of quantum technologies. Their functioning is underpinned by the many-body adiabatic evolution connecting the ground state of a simple system to that of an interacting classical Hamiltonian which encodes the solution to an optimization problem. Here we explore more general properties of the dynamics of quantum annealers, going beyond the low-energy regime. We show that the unitary evolution operator describing the complete dynamics is typically highly quantum chaotic. As a result, the annealing dynamics naturally leads to volume-law entangled random-like states when the initial configuration is rotated away from the low-energy subspace. Furthermore, we observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling. In contrast, we find that when the annealing schedule is returned to the initial configuration (i.e. via a cyclic ramp), a subtle interplay between chaos and adiabaticity emerges, and the dynamics shows strong deviations from full ergodicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信