José R. Pérez-Higareda, Jesús A. Torres, César Leyva-Porras, Oscar O. Solís-Canto, Carlos Torres-Torres, Alicia Oliver, David Torres-Torres
{"title":"离子注入金纳米粒子对二氧化硅玻璃表面性能的力学影响","authors":"José R. Pérez-Higareda, Jesús A. Torres, César Leyva-Porras, Oscar O. Solís-Canto, Carlos Torres-Torres, Alicia Oliver, David Torres-Torres","doi":"10.1111/ijag.70002","DOIUrl":null,"url":null,"abstract":"<p>Silica glass (SG) is a highly versatile material used in optics, electronics, construction, and medicine due to its transparency and mechanical properties. However, enhancing its performance poses scientific challenges, especially in reinforcing it while preserving these properties and understanding its deformation under stress. This study investigates the effect of gold nanoparticles (AuNPs) on the mechanical response of SG material. AuNPs were nucleated into high-purity SG using a 3MV Tandem Accelerator Pelletron, followed by thermal annealing at 600°C in an H<sub>2</sub> + N<sub>2</sub> atmosphere. High-resolution transmission electron microscopy (HRTEM) revealed a Gaussian distribution of AuNPs at a depth of ∼450 nm. Nanoindentation tests indicated minor variations in hardness (1.5%) and reduced elastic modulus (4.4%) with AuNP incorporation. Scratch tests demonstrated that the mechanical integrity of the AuNPs/SG sample was preserved when deformation remained below the determined fracture load of SG, although it exhibited a slightly higher coefficient of friction. Finite element analysis provided insights into the strain behavior within the AuNP zone, confirming how AuNPs distribute stress within the SG matrix.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical effects of ion-implanted gold nanoparticles on the surface properties of silica glass\",\"authors\":\"José R. Pérez-Higareda, Jesús A. Torres, César Leyva-Porras, Oscar O. Solís-Canto, Carlos Torres-Torres, Alicia Oliver, David Torres-Torres\",\"doi\":\"10.1111/ijag.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silica glass (SG) is a highly versatile material used in optics, electronics, construction, and medicine due to its transparency and mechanical properties. However, enhancing its performance poses scientific challenges, especially in reinforcing it while preserving these properties and understanding its deformation under stress. This study investigates the effect of gold nanoparticles (AuNPs) on the mechanical response of SG material. AuNPs were nucleated into high-purity SG using a 3MV Tandem Accelerator Pelletron, followed by thermal annealing at 600°C in an H<sub>2</sub> + N<sub>2</sub> atmosphere. High-resolution transmission electron microscopy (HRTEM) revealed a Gaussian distribution of AuNPs at a depth of ∼450 nm. Nanoindentation tests indicated minor variations in hardness (1.5%) and reduced elastic modulus (4.4%) with AuNP incorporation. Scratch tests demonstrated that the mechanical integrity of the AuNPs/SG sample was preserved when deformation remained below the determined fracture load of SG, although it exhibited a slightly higher coefficient of friction. Finite element analysis provided insights into the strain behavior within the AuNP zone, confirming how AuNPs distribute stress within the SG matrix.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijag.70002\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijag.70002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Mechanical effects of ion-implanted gold nanoparticles on the surface properties of silica glass
Silica glass (SG) is a highly versatile material used in optics, electronics, construction, and medicine due to its transparency and mechanical properties. However, enhancing its performance poses scientific challenges, especially in reinforcing it while preserving these properties and understanding its deformation under stress. This study investigates the effect of gold nanoparticles (AuNPs) on the mechanical response of SG material. AuNPs were nucleated into high-purity SG using a 3MV Tandem Accelerator Pelletron, followed by thermal annealing at 600°C in an H2 + N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) revealed a Gaussian distribution of AuNPs at a depth of ∼450 nm. Nanoindentation tests indicated minor variations in hardness (1.5%) and reduced elastic modulus (4.4%) with AuNP incorporation. Scratch tests demonstrated that the mechanical integrity of the AuNPs/SG sample was preserved when deformation remained below the determined fracture load of SG, although it exhibited a slightly higher coefficient of friction. Finite element analysis provided insights into the strain behavior within the AuNP zone, confirming how AuNPs distribute stress within the SG matrix.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.