基于数据增强的镍基高温合金低周疲劳寿命预测模型

IF 2.7 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luopeng Xu, Lei Xiong, Rulun Zhang, Jiajun Zheng, Huawei Zou, Zhixin Li, Xiaopeng Wang, Qingyuan Wang
{"title":"基于数据增强的镍基高温合金低周疲劳寿命预测模型","authors":"Luopeng Xu,&nbsp;Lei Xiong,&nbsp;Rulun Zhang,&nbsp;Jiajun Zheng,&nbsp;Huawei Zou,&nbsp;Zhixin Li,&nbsp;Xiaopeng Wang,&nbsp;Qingyuan Wang","doi":"10.1007/s10338-024-00541-0","DOIUrl":null,"url":null,"abstract":"<div><p>To overcome the challenges of limited experimental data and improve the accuracy of empirical formulas, we propose a low-cycle fatigue (LCF) life prediction model for nickel-based superalloys using a data augmentation method. This method utilizes a variational autoencoder (VAE) to generate low-cycle fatigue data and form an augmented dataset. The Pearson correlation coefficient (PCC) is employed to verify the similarity of feature distributions between the original and augmented datasets. Six machine learning models, namely random forest (RF), artificial neural network (ANN), support vector machine (SVM), gradient-boosted decision tree (GBDT), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost), are utilized to predict the LCF life of nickel-based superalloys. Results indicate that the proposed data augmentation method based on VAE can effectively expand the dataset, and the mean absolute error (MAE), root mean square error (RMSE), and R-squared (R<sup>2</sup>) values achieved using the CatBoost model, with respective values of 0.0242, 0.0391, and 0.9538, are superior to those of the other models. The proposed method reduces the cost and time associated with LCF experiments and accurately establishes the relationship between fatigue characteristics and LCF life of nickel-based superalloys.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 4","pages":"612 - 623"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Enhanced Low-Cycle Fatigue Life Prediction Model Based on Nickel-Based Superalloys\",\"authors\":\"Luopeng Xu,&nbsp;Lei Xiong,&nbsp;Rulun Zhang,&nbsp;Jiajun Zheng,&nbsp;Huawei Zou,&nbsp;Zhixin Li,&nbsp;Xiaopeng Wang,&nbsp;Qingyuan Wang\",\"doi\":\"10.1007/s10338-024-00541-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To overcome the challenges of limited experimental data and improve the accuracy of empirical formulas, we propose a low-cycle fatigue (LCF) life prediction model for nickel-based superalloys using a data augmentation method. This method utilizes a variational autoencoder (VAE) to generate low-cycle fatigue data and form an augmented dataset. The Pearson correlation coefficient (PCC) is employed to verify the similarity of feature distributions between the original and augmented datasets. Six machine learning models, namely random forest (RF), artificial neural network (ANN), support vector machine (SVM), gradient-boosted decision tree (GBDT), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost), are utilized to predict the LCF life of nickel-based superalloys. Results indicate that the proposed data augmentation method based on VAE can effectively expand the dataset, and the mean absolute error (MAE), root mean square error (RMSE), and R-squared (R<sup>2</sup>) values achieved using the CatBoost model, with respective values of 0.0242, 0.0391, and 0.9538, are superior to those of the other models. The proposed method reduces the cost and time associated with LCF experiments and accurately establishes the relationship between fatigue characteristics and LCF life of nickel-based superalloys.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 4\",\"pages\":\"612 - 623\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00541-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00541-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了克服实验数据有限的挑战,提高经验公式的准确性,提出了一种基于数据增强的镍基高温合金低周疲劳寿命预测模型。该方法利用变分自编码器(VAE)生成低周疲劳数据并形成增广数据集。使用Pearson相关系数(PCC)来验证原始数据集和增强数据集之间特征分布的相似性。采用随机森林(RF)、人工神经网络(ANN)、支持向量机(SVM)、梯度增强决策树(GBDT)、极限梯度增强(XGBoost)和分类增强(CatBoost)等6种机器学习模型对镍基高温合金LCF寿命进行了预测。结果表明,基于VAE的数据增强方法能够有效扩展数据集,且CatBoost模型的平均绝对误差(MAE)、均方根误差(RMSE)和r平方(R2)值分别为0.0242、0.0391和0.9538,均优于其他模型。该方法降低了LCF试验的成本和时间,准确地建立了镍基高温合金的疲劳特性与LCF寿命之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Enhanced Low-Cycle Fatigue Life Prediction Model Based on Nickel-Based Superalloys

To overcome the challenges of limited experimental data and improve the accuracy of empirical formulas, we propose a low-cycle fatigue (LCF) life prediction model for nickel-based superalloys using a data augmentation method. This method utilizes a variational autoencoder (VAE) to generate low-cycle fatigue data and form an augmented dataset. The Pearson correlation coefficient (PCC) is employed to verify the similarity of feature distributions between the original and augmented datasets. Six machine learning models, namely random forest (RF), artificial neural network (ANN), support vector machine (SVM), gradient-boosted decision tree (GBDT), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost), are utilized to predict the LCF life of nickel-based superalloys. Results indicate that the proposed data augmentation method based on VAE can effectively expand the dataset, and the mean absolute error (MAE), root mean square error (RMSE), and R-squared (R2) values achieved using the CatBoost model, with respective values of 0.0242, 0.0391, and 0.9538, are superior to those of the other models. The proposed method reduces the cost and time associated with LCF experiments and accurately establishes the relationship between fatigue characteristics and LCF life of nickel-based superalloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信