Marco Dominguez-Bureos, Christoph Sens-Schönfelder, Ernst Niederleithinger, Céline Hadziioannou
{"title":"钢筋混凝土试验桥完整性评估弹性特性的应力和时间相关变化","authors":"Marco Dominguez-Bureos, Christoph Sens-Schönfelder, Ernst Niederleithinger, Céline Hadziioannou","doi":"10.1007/s10921-025-01257-y","DOIUrl":null,"url":null,"abstract":"<div><p>In lab experiments, it has been observed that the stress–and time-dependent elastic properties of a complex material at a structural scale perform accordingly to its composition at a microstructural level. We seek complementary practices to the current wavefield-based non-destructive testing techniques to assess not only the integrity level of civil structures but also the microstructural elements that contribute to it. In this paper, we study the systematic evolution of elastic properties of concrete as an alternative to investigate the density of micro imperfections in an outdoor-conditioned concrete structure. We estimate 5-second relative velocity changes in four locations on a Test bridge subjected to the action of vertical impulsive sources, at different prestressing levels (dynamic effects at different static conditions). We describe the structure’s stress- and time-dependent elastic response by means of acoustoelastic effect and Slow-dynamic processes, respectively. We also estimate the conventional ultrasound pulse velocity and perform a cooperative integrity analysis of the structure using the three elastic phenomena. Our findings reveal: 1) The presence of soft microstructures and their orientation’s influence on the acoustoelastic effect and Slow-dynamics in field-conditioned concrete structures. 2) The relation of low ultrasound pulse velocities with high acoustoelastic effect and high magnitudes and variability of Slow-dynamics. 3) Different elastic behaviours on the north and south spans of the bridge, suggesting different heterogeneity levels on the analysed locations of the concrete beam.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01257-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Stress- and Time-dependent Variations of Elastic Properties for Integrity Assessment in a Reinforced Concrete Test Bridge\",\"authors\":\"Marco Dominguez-Bureos, Christoph Sens-Schönfelder, Ernst Niederleithinger, Céline Hadziioannou\",\"doi\":\"10.1007/s10921-025-01257-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In lab experiments, it has been observed that the stress–and time-dependent elastic properties of a complex material at a structural scale perform accordingly to its composition at a microstructural level. We seek complementary practices to the current wavefield-based non-destructive testing techniques to assess not only the integrity level of civil structures but also the microstructural elements that contribute to it. In this paper, we study the systematic evolution of elastic properties of concrete as an alternative to investigate the density of micro imperfections in an outdoor-conditioned concrete structure. We estimate 5-second relative velocity changes in four locations on a Test bridge subjected to the action of vertical impulsive sources, at different prestressing levels (dynamic effects at different static conditions). We describe the structure’s stress- and time-dependent elastic response by means of acoustoelastic effect and Slow-dynamic processes, respectively. We also estimate the conventional ultrasound pulse velocity and perform a cooperative integrity analysis of the structure using the three elastic phenomena. Our findings reveal: 1) The presence of soft microstructures and their orientation’s influence on the acoustoelastic effect and Slow-dynamics in field-conditioned concrete structures. 2) The relation of low ultrasound pulse velocities with high acoustoelastic effect and high magnitudes and variability of Slow-dynamics. 3) Different elastic behaviours on the north and south spans of the bridge, suggesting different heterogeneity levels on the analysed locations of the concrete beam.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-025-01257-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01257-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01257-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Stress- and Time-dependent Variations of Elastic Properties for Integrity Assessment in a Reinforced Concrete Test Bridge
In lab experiments, it has been observed that the stress–and time-dependent elastic properties of a complex material at a structural scale perform accordingly to its composition at a microstructural level. We seek complementary practices to the current wavefield-based non-destructive testing techniques to assess not only the integrity level of civil structures but also the microstructural elements that contribute to it. In this paper, we study the systematic evolution of elastic properties of concrete as an alternative to investigate the density of micro imperfections in an outdoor-conditioned concrete structure. We estimate 5-second relative velocity changes in four locations on a Test bridge subjected to the action of vertical impulsive sources, at different prestressing levels (dynamic effects at different static conditions). We describe the structure’s stress- and time-dependent elastic response by means of acoustoelastic effect and Slow-dynamic processes, respectively. We also estimate the conventional ultrasound pulse velocity and perform a cooperative integrity analysis of the structure using the three elastic phenomena. Our findings reveal: 1) The presence of soft microstructures and their orientation’s influence on the acoustoelastic effect and Slow-dynamics in field-conditioned concrete structures. 2) The relation of low ultrasound pulse velocities with high acoustoelastic effect and high magnitudes and variability of Slow-dynamics. 3) Different elastic behaviours on the north and south spans of the bridge, suggesting different heterogeneity levels on the analysed locations of the concrete beam.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.