高温下二维离散高斯模型多点函数的中心极限定理

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jiwoon Park
{"title":"高温下二维离散高斯模型多点函数的中心极限定理","authors":"Jiwoon Park","doi":"10.1007/s00220-025-05396-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study microscopic observables of the Discrete Gaussian model (i.e., the Gaussian free field restricted to take integer values) at high temperature using the renormalisation group method. In particular, we show the central limit theorem for the two-point function of the Discrete Gaussian model by computing the asymptotic of the moment generating function <span>\\(\\big \\langle e^{{\\mathcalligra {z}}(\\sigma (0) - \\sigma (y))} \\big \\rangle _{\\beta , {\\mathbb {Z}}^2}^{\\operatorname {DG}}\\)</span> for <span>\\({\\mathcalligra {z}}\\in {\\mathbb {C}}\\)</span> sufficiently small. The method we use has direct connection with the multi-scale polymer expansion used in Bauerschmidt et al. (Ann Probab 52(4):1253–1359, 2024, Ann Probab 52(4):1360–1398, 2024), where it was used to study the scaling limit of the Discrete Gaussian model. The method also applies to multi-point functions and lattice models of sine-Gordon type studied in Fröhlich and Spencer (Commun Math Phys 81(4): 527–602, 1981).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central Limit Theorem for Multi-Point Functions of the 2D Discrete Gaussian Model at High Temperature\",\"authors\":\"Jiwoon Park\",\"doi\":\"10.1007/s00220-025-05396-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study microscopic observables of the Discrete Gaussian model (i.e., the Gaussian free field restricted to take integer values) at high temperature using the renormalisation group method. In particular, we show the central limit theorem for the two-point function of the Discrete Gaussian model by computing the asymptotic of the moment generating function <span>\\\\(\\\\big \\\\langle e^{{\\\\mathcalligra {z}}(\\\\sigma (0) - \\\\sigma (y))} \\\\big \\\\rangle _{\\\\beta , {\\\\mathbb {Z}}^2}^{\\\\operatorname {DG}}\\\\)</span> for <span>\\\\({\\\\mathcalligra {z}}\\\\in {\\\\mathbb {C}}\\\\)</span> sufficiently small. The method we use has direct connection with the multi-scale polymer expansion used in Bauerschmidt et al. (Ann Probab 52(4):1253–1359, 2024, Ann Probab 52(4):1360–1398, 2024), where it was used to study the scaling limit of the Discrete Gaussian model. The method also applies to multi-point functions and lattice models of sine-Gordon type studied in Fröhlich and Spencer (Commun Math Phys 81(4): 527–602, 1981).</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05396-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05396-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用重整化群方法研究了高温下离散高斯模型(即限制为整数值的高斯自由场)的微观观测值。特别地,我们通过计算\({\mathcalligra {z}}\in {\mathbb {C}}\)足够小的矩生成函数\(\big \langle e^{{\mathcalligra {z}}(\sigma (0) - \sigma (y))} \big \rangle _{\beta , {\mathbb {Z}}^2}^{\operatorname {DG}}\)的渐近,证明了离散高斯模型两点函数的中心极限定理。我们使用的方法与Bauerschmidt等人(Ann Probab 52(4):1253 - 1359,2024, Ann Probab 52(4):1360 - 1398,2024)中使用的多尺度聚合物膨胀有直接联系,该方法用于研究离散高斯模型的缩放极限。该方法也适用于Fröhlich和Spencer (comm Math Phys 81(4): 527-602, 1981)研究的sin - gordon型的多点函数和点阵模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Central Limit Theorem for Multi-Point Functions of the 2D Discrete Gaussian Model at High Temperature

Central Limit Theorem for Multi-Point Functions of the 2D Discrete Gaussian Model at High Temperature

Central Limit Theorem for Multi-Point Functions of the 2D Discrete Gaussian Model at High Temperature

We study microscopic observables of the Discrete Gaussian model (i.e., the Gaussian free field restricted to take integer values) at high temperature using the renormalisation group method. In particular, we show the central limit theorem for the two-point function of the Discrete Gaussian model by computing the asymptotic of the moment generating function \(\big \langle e^{{\mathcalligra {z}}(\sigma (0) - \sigma (y))} \big \rangle _{\beta , {\mathbb {Z}}^2}^{\operatorname {DG}}\) for \({\mathcalligra {z}}\in {\mathbb {C}}\) sufficiently small. The method we use has direct connection with the multi-scale polymer expansion used in Bauerschmidt et al. (Ann Probab 52(4):1253–1359, 2024, Ann Probab 52(4):1360–1398, 2024), where it was used to study the scaling limit of the Discrete Gaussian model. The method also applies to multi-point functions and lattice models of sine-Gordon type studied in Fröhlich and Spencer (Commun Math Phys 81(4): 527–602, 1981).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信