黑洞稳定性的类空间初始数据

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Allen Juntao Fang, Jérémie Szeftel, Arthur Touati
{"title":"黑洞稳定性的类空间初始数据","authors":"Allen Juntao Fang,&nbsp;Jérémie Szeftel,&nbsp;Arthur Touati","doi":"10.1007/s00220-025-05416-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct initial data suitable for the Kerr stability conjecture, that is, solutions to the constraint equations on a spacelike hypersurface with boundary entering the black hole horizon that are arbitrarily decaying perturbations of a Kerr initial data set. This results from a more general perturbative construction on any asymptotically flat initial data set with <span>\\(r^{-1}\\)</span> fall-off and the topology of <span>\\(\\mathbb {R}^3\\setminus \\{r&lt;1\\}\\)</span> enjoying some analyticity near and at the boundary. In particular, we design a suitable mixed boundary condition for the elliptic operator of the conformal method in order to exclude the Killing initial data sets (KIDS).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spacelike Initial Data for Black Hole Stability\",\"authors\":\"Allen Juntao Fang,&nbsp;Jérémie Szeftel,&nbsp;Arthur Touati\",\"doi\":\"10.1007/s00220-025-05416-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct initial data suitable for the Kerr stability conjecture, that is, solutions to the constraint equations on a spacelike hypersurface with boundary entering the black hole horizon that are arbitrarily decaying perturbations of a Kerr initial data set. This results from a more general perturbative construction on any asymptotically flat initial data set with <span>\\\\(r^{-1}\\\\)</span> fall-off and the topology of <span>\\\\(\\\\mathbb {R}^3\\\\setminus \\\\{r&lt;1\\\\}\\\\)</span> enjoying some analyticity near and at the boundary. In particular, we design a suitable mixed boundary condition for the elliptic operator of the conformal method in order to exclude the Killing initial data sets (KIDS).</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05416-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05416-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了适合Kerr稳定性猜想的初始数据,即边界进入黑洞视界的类空间超表面上约束方程的解,这些方程是Kerr初始数据集的任意衰减摄动。这是由一个更一般的微扰构造在任何渐近平坦的初始数据集上得到的结果,该初始数据集具有\(r^{-1}\)脱落,并且\(\mathbb {R}^3\setminus \{r<1\}\)的拓扑结构在边界附近和边界处具有一定的解析性。特别地,我们为保形方法的椭圆算子设计了一个合适的混合边界条件,以排除杀戮初始数据集(KIDS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spacelike Initial Data for Black Hole Stability

Spacelike Initial Data for Black Hole Stability

Spacelike Initial Data for Black Hole Stability

We construct initial data suitable for the Kerr stability conjecture, that is, solutions to the constraint equations on a spacelike hypersurface with boundary entering the black hole horizon that are arbitrarily decaying perturbations of a Kerr initial data set. This results from a more general perturbative construction on any asymptotically flat initial data set with \(r^{-1}\) fall-off and the topology of \(\mathbb {R}^3\setminus \{r<1\}\) enjoying some analyticity near and at the boundary. In particular, we design a suitable mixed boundary condition for the elliptic operator of the conformal method in order to exclude the Killing initial data sets (KIDS).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信