Quantong Zhang, Yao Zheng, Liu Yang, Shuaishuai Zhang, Quanyou Guo
{"title":"结合计算机视觉和卷积神经网络快速定量分析南极磷虾粉中虾青素异构体","authors":"Quantong Zhang, Yao Zheng, Liu Yang, Shuaishuai Zhang, Quanyou Guo","doi":"10.1007/s10921-025-01256-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, computer vision and deep learning was combined to develop a rapid method for quantifying the astaxanthin isomer content in krill meal. A total of 310 Antarctic krill meal samples were collected and their astaxanthin isomer content was determined as observed values using high-performance liquid chromatography. A computer vision system was then used to acquire images of the krill meal samples, which were subsequently preprocessed and fed into a Convolutional Neural Network (CNN) to establish a predictive model; its performance was compared with that of a feature-based artificial neural networks model. The results showed that the 13-cistrine (13-Cis) astaxanthin, all-trans astaxanthin, and 9-cistrine (9-Cis) astaxanthin content were distributed in the range of 0–2.05 mg/kg, 0.09–62.97 mg/kg, and 0–7.58 mg/kg, respectively. For the test set, CNN achieved an R<sup>2</sup> of 0.96 in predicting all-trans astaxanthin and an R<sup>2</sup> of 0.88 for 9-Cis astaxanthin. In out-of-sample validation, the CNN achieved mean relative errors of 5.20% and 11.35% for all-trans and 9-Cis astaxanthin, respectively. In conclusion, computer vision combined with CNN offers an efficient, precise, and non-destructive technique for quantitatively analysing astaxanthin isomers in krill meal.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Quantitative Analysis of Astaxanthin Isomers in Antarctic Krill Meal by Combining Computer Vision with Convolutional Neural Network\",\"authors\":\"Quantong Zhang, Yao Zheng, Liu Yang, Shuaishuai Zhang, Quanyou Guo\",\"doi\":\"10.1007/s10921-025-01256-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, computer vision and deep learning was combined to develop a rapid method for quantifying the astaxanthin isomer content in krill meal. A total of 310 Antarctic krill meal samples were collected and their astaxanthin isomer content was determined as observed values using high-performance liquid chromatography. A computer vision system was then used to acquire images of the krill meal samples, which were subsequently preprocessed and fed into a Convolutional Neural Network (CNN) to establish a predictive model; its performance was compared with that of a feature-based artificial neural networks model. The results showed that the 13-cistrine (13-Cis) astaxanthin, all-trans astaxanthin, and 9-cistrine (9-Cis) astaxanthin content were distributed in the range of 0–2.05 mg/kg, 0.09–62.97 mg/kg, and 0–7.58 mg/kg, respectively. For the test set, CNN achieved an R<sup>2</sup> of 0.96 in predicting all-trans astaxanthin and an R<sup>2</sup> of 0.88 for 9-Cis astaxanthin. In out-of-sample validation, the CNN achieved mean relative errors of 5.20% and 11.35% for all-trans and 9-Cis astaxanthin, respectively. In conclusion, computer vision combined with CNN offers an efficient, precise, and non-destructive technique for quantitatively analysing astaxanthin isomers in krill meal.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01256-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01256-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Rapid Quantitative Analysis of Astaxanthin Isomers in Antarctic Krill Meal by Combining Computer Vision with Convolutional Neural Network
In this study, computer vision and deep learning was combined to develop a rapid method for quantifying the astaxanthin isomer content in krill meal. A total of 310 Antarctic krill meal samples were collected and their astaxanthin isomer content was determined as observed values using high-performance liquid chromatography. A computer vision system was then used to acquire images of the krill meal samples, which were subsequently preprocessed and fed into a Convolutional Neural Network (CNN) to establish a predictive model; its performance was compared with that of a feature-based artificial neural networks model. The results showed that the 13-cistrine (13-Cis) astaxanthin, all-trans astaxanthin, and 9-cistrine (9-Cis) astaxanthin content were distributed in the range of 0–2.05 mg/kg, 0.09–62.97 mg/kg, and 0–7.58 mg/kg, respectively. For the test set, CNN achieved an R2 of 0.96 in predicting all-trans astaxanthin and an R2 of 0.88 for 9-Cis astaxanthin. In out-of-sample validation, the CNN achieved mean relative errors of 5.20% and 11.35% for all-trans and 9-Cis astaxanthin, respectively. In conclusion, computer vision combined with CNN offers an efficient, precise, and non-destructive technique for quantitatively analysing astaxanthin isomers in krill meal.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.