缩并自相似群的C*-代数的简单性

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Eusebio Gardella, Volodymyr Nekrashevych, Benjamin Steinberg, Alina Vdovina
{"title":"缩并自相似群的C*-代数的简单性","authors":"Eusebio Gardella,&nbsp;Volodymyr Nekrashevych,&nbsp;Benjamin Steinberg,&nbsp;Alina Vdovina","doi":"10.1007/s00220-025-05411-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the <span>\\(C^*\\)</span>-algebra associated by Nekrashevych to a contracting self-similar group is simple if and only if the corresponding complex <span>\\(*\\)</span>-algebra is simple. We also improve on Steinberg and Szakács’s algorithm to determine if the <span>\\(*\\)</span>-algebra is simple. This provides an interesting class of non-Hausdorff, amenable, effective and minimal ample groupoids for which simplicity of the <span>\\(C^*\\)</span>-algebra and the complex <span>\\(*\\)</span>-algebra are equivalent.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplicity of C*-Algebras of Contracting Self-Similar Groups\",\"authors\":\"Eusebio Gardella,&nbsp;Volodymyr Nekrashevych,&nbsp;Benjamin Steinberg,&nbsp;Alina Vdovina\",\"doi\":\"10.1007/s00220-025-05411-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the <span>\\\\(C^*\\\\)</span>-algebra associated by Nekrashevych to a contracting self-similar group is simple if and only if the corresponding complex <span>\\\\(*\\\\)</span>-algebra is simple. We also improve on Steinberg and Szakács’s algorithm to determine if the <span>\\\\(*\\\\)</span>-algebra is simple. This provides an interesting class of non-Hausdorff, amenable, effective and minimal ample groupoids for which simplicity of the <span>\\\\(C^*\\\\)</span>-algebra and the complex <span>\\\\(*\\\\)</span>-algebra are equivalent.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05411-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05411-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Nekrashevych与一个收缩自相似群相关联的\(C^*\) -代数是简单的当且仅当对应的复\(*\) -代数是简单的。我们还改进了Steinberg和Szakács的算法,以确定\(*\) -代数是否简单。这提供了一类有趣的非hausdorff、可服从、有效和最小样本群,其中\(C^*\) -代数和复杂\(*\) -代数的简单性是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simplicity of C*-Algebras of Contracting Self-Similar Groups

Simplicity of C*-Algebras of Contracting Self-Similar Groups

Simplicity of C*-Algebras of Contracting Self-Similar Groups

We show that the \(C^*\)-algebra associated by Nekrashevych to a contracting self-similar group is simple if and only if the corresponding complex \(*\)-algebra is simple. We also improve on Steinberg and Szakács’s algorithm to determine if the \(*\)-algebra is simple. This provides an interesting class of non-Hausdorff, amenable, effective and minimal ample groupoids for which simplicity of the \(C^*\)-algebra and the complex \(*\)-algebra are equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信