\(C^*\)-高阶本体边界对应的框架

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Danilo Polo Ojito, Emil Prodan, Tom Stoiber
{"title":"\\(C^*\\)-高阶本体边界对应的框架","authors":"Danilo Polo Ojito,&nbsp;Emil Prodan,&nbsp;Tom Stoiber","doi":"10.1007/s00220-025-05415-1","DOIUrl":null,"url":null,"abstract":"<div><p>A typical crystal is a finite piece of a material which may be invariant under some point symmetry group. If it is a so-called <i>intrinsic</i> higher-order topological insulator or superconductor, then it displays boundary modes at hinges or corners protected by the crystalline symmetry and the bulk topology. We explain the mechanism behind such phenomena using operator K-theory. Specifically, we derive a groupoid <span>\\(C^*\\)</span>-algebra that (1) encodes the dynamics of the electrons in the infinite size limit of a crystal; (2) remembers the boundary conditions at the crystal’s boundaries, and (3) admits a natural action by the point symmetries of the atomic lattice. The filtrations of the groupoid’s unit space by closed subsets that are invariant under the groupoid and point group actions supply equivariant cofiltrations of the groupoid <span>\\(C^*\\)</span>-algebra. We show that specific derivations of the induced spectral sequences in twisted equivariant K-theories enumerate all non-trivial higher-order bulk-boundary correspondences.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(C^*\\\\)-Framework for Higher-Order Bulk-Boundary Correspondences\",\"authors\":\"Danilo Polo Ojito,&nbsp;Emil Prodan,&nbsp;Tom Stoiber\",\"doi\":\"10.1007/s00220-025-05415-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A typical crystal is a finite piece of a material which may be invariant under some point symmetry group. If it is a so-called <i>intrinsic</i> higher-order topological insulator or superconductor, then it displays boundary modes at hinges or corners protected by the crystalline symmetry and the bulk topology. We explain the mechanism behind such phenomena using operator K-theory. Specifically, we derive a groupoid <span>\\\\(C^*\\\\)</span>-algebra that (1) encodes the dynamics of the electrons in the infinite size limit of a crystal; (2) remembers the boundary conditions at the crystal’s boundaries, and (3) admits a natural action by the point symmetries of the atomic lattice. The filtrations of the groupoid’s unit space by closed subsets that are invariant under the groupoid and point group actions supply equivariant cofiltrations of the groupoid <span>\\\\(C^*\\\\)</span>-algebra. We show that specific derivations of the induced spectral sequences in twisted equivariant K-theories enumerate all non-trivial higher-order bulk-boundary correspondences.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05415-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05415-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

典型的晶体是材料的有限块,在某些点对称群下可能是不变的。如果它是所谓的高阶拓扑绝缘体或超导体,那么它在铰链或角落显示边界模式,受到晶体对称性和体拓扑的保护。我们用k算子理论解释了这种现象背后的机制。具体来说,我们推导了一个群态\(C^*\) -代数,它(1)编码了晶体无限尺寸极限下电子的动力学;(2)记住晶体边界的边界条件,(3)承认原子晶格的点对称性的自然作用。群和点群作用下不变的闭子集对群的单位空间的过滤提供了群\(C^*\) -代数的等变共过滤。我们证明了扭曲等变k理论中诱导谱序列的特定推导列举了所有非平凡高阶体边界对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

\(C^*\)-Framework for Higher-Order Bulk-Boundary Correspondences

\(C^*\)-Framework for Higher-Order Bulk-Boundary Correspondences

\(C^*\)-Framework for Higher-Order Bulk-Boundary Correspondences

A typical crystal is a finite piece of a material which may be invariant under some point symmetry group. If it is a so-called intrinsic higher-order topological insulator or superconductor, then it displays boundary modes at hinges or corners protected by the crystalline symmetry and the bulk topology. We explain the mechanism behind such phenomena using operator K-theory. Specifically, we derive a groupoid \(C^*\)-algebra that (1) encodes the dynamics of the electrons in the infinite size limit of a crystal; (2) remembers the boundary conditions at the crystal’s boundaries, and (3) admits a natural action by the point symmetries of the atomic lattice. The filtrations of the groupoid’s unit space by closed subsets that are invariant under the groupoid and point group actions supply equivariant cofiltrations of the groupoid \(C^*\)-algebra. We show that specific derivations of the induced spectral sequences in twisted equivariant K-theories enumerate all non-trivial higher-order bulk-boundary correspondences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信