Beatriz Pereira Savi, Catielen Paula Pavi, Bianca da Costa Bernardo Port, Thiago Caon, Débora Fretes Argenta, Gislaine Fongaro
{"title":"用负载牛至精油的聚合纳米颗粒灭活小鼠诺如病毒的研究","authors":"Beatriz Pereira Savi, Catielen Paula Pavi, Bianca da Costa Bernardo Port, Thiago Caon, Débora Fretes Argenta, Gislaine Fongaro","doi":"10.1007/s12560-025-09656-0","DOIUrl":null,"url":null,"abstract":"<div><p>Noroviruses are the leading cause of gastroenteritis outbreaks in humans worldwide. Their unique properties ensure stability over extended periods under adverse conditions, which enhances their risk as food and water contaminants. In recent years, intensive research has focused on the natural antimicrobial potential of plant metabolites as disinfectants against environmental pathogens. The oregano essential oil (OEO) has gained attention due to its valuable properties, including antimicrobial, antioxidant, antiviral, and antifungal activities. However, the susceptibility of OEO to degradation and oxidation under environmental or storage conditions, coupled with its low water solubility, has limited its practical applications. Nanoencapsulation has emerged as a promising strategy to overcome these limitations by prolonging shelf life, improving stability, enabling controlled release, and expanding its potential uses. In this study, we evaluated the virucidal potential of chitosan-based polymeric nanoparticles incorporating <i>Origanum vulgare</i> essential oil against murine norovirus 1 (MNV-1) for food and environmental applications. To assess the virucidal effect of the OEO nanoparticles, the reduction in viral infectivity was determined by comparing the TCID<sub>50</sub>/mL values of untreated viral suspensions with those treated with the tested compounds at varying concentrations. The results demonstrated effective viral inactivation at all tested concentrations, with the undiluted formulation (40 mg/mL incorporated OEO) achieving the highest inactivation rate (99.72%). The blank formulation showed no significant virucidal activity, while the pure OEO exhibited cytotoxicity at most tested concentrations. These findings support the development of a biotechnological disinfectant with potential applications in both environmental and controlled conditions.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"17 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inactivation of Murine Norovirus Using Polymeric Nanoparticle loaded with Oregano Essential Oil for Food and Environmental Applications\",\"authors\":\"Beatriz Pereira Savi, Catielen Paula Pavi, Bianca da Costa Bernardo Port, Thiago Caon, Débora Fretes Argenta, Gislaine Fongaro\",\"doi\":\"10.1007/s12560-025-09656-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Noroviruses are the leading cause of gastroenteritis outbreaks in humans worldwide. Their unique properties ensure stability over extended periods under adverse conditions, which enhances their risk as food and water contaminants. In recent years, intensive research has focused on the natural antimicrobial potential of plant metabolites as disinfectants against environmental pathogens. The oregano essential oil (OEO) has gained attention due to its valuable properties, including antimicrobial, antioxidant, antiviral, and antifungal activities. However, the susceptibility of OEO to degradation and oxidation under environmental or storage conditions, coupled with its low water solubility, has limited its practical applications. Nanoencapsulation has emerged as a promising strategy to overcome these limitations by prolonging shelf life, improving stability, enabling controlled release, and expanding its potential uses. In this study, we evaluated the virucidal potential of chitosan-based polymeric nanoparticles incorporating <i>Origanum vulgare</i> essential oil against murine norovirus 1 (MNV-1) for food and environmental applications. To assess the virucidal effect of the OEO nanoparticles, the reduction in viral infectivity was determined by comparing the TCID<sub>50</sub>/mL values of untreated viral suspensions with those treated with the tested compounds at varying concentrations. The results demonstrated effective viral inactivation at all tested concentrations, with the undiluted formulation (40 mg/mL incorporated OEO) achieving the highest inactivation rate (99.72%). The blank formulation showed no significant virucidal activity, while the pure OEO exhibited cytotoxicity at most tested concentrations. These findings support the development of a biotechnological disinfectant with potential applications in both environmental and controlled conditions.</p></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-025-09656-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-025-09656-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Inactivation of Murine Norovirus Using Polymeric Nanoparticle loaded with Oregano Essential Oil for Food and Environmental Applications
Noroviruses are the leading cause of gastroenteritis outbreaks in humans worldwide. Their unique properties ensure stability over extended periods under adverse conditions, which enhances their risk as food and water contaminants. In recent years, intensive research has focused on the natural antimicrobial potential of plant metabolites as disinfectants against environmental pathogens. The oregano essential oil (OEO) has gained attention due to its valuable properties, including antimicrobial, antioxidant, antiviral, and antifungal activities. However, the susceptibility of OEO to degradation and oxidation under environmental or storage conditions, coupled with its low water solubility, has limited its practical applications. Nanoencapsulation has emerged as a promising strategy to overcome these limitations by prolonging shelf life, improving stability, enabling controlled release, and expanding its potential uses. In this study, we evaluated the virucidal potential of chitosan-based polymeric nanoparticles incorporating Origanum vulgare essential oil against murine norovirus 1 (MNV-1) for food and environmental applications. To assess the virucidal effect of the OEO nanoparticles, the reduction in viral infectivity was determined by comparing the TCID50/mL values of untreated viral suspensions with those treated with the tested compounds at varying concentrations. The results demonstrated effective viral inactivation at all tested concentrations, with the undiluted formulation (40 mg/mL incorporated OEO) achieving the highest inactivation rate (99.72%). The blank formulation showed no significant virucidal activity, while the pure OEO exhibited cytotoxicity at most tested concentrations. These findings support the development of a biotechnological disinfectant with potential applications in both environmental and controlled conditions.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.