优先Na+吸附驱动的阳离子静电斥力使低温下高度可逆的锌阳极成为可能

IF 36.3 1区 材料科学 Q1 Engineering
Guanchong Mao, Pan Xu, Xin Liu, Xingyu Zhao, Zexiang Shen, Dongliang Chao, Minghua Chen
{"title":"优先Na+吸附驱动的阳离子静电斥力使低温下高度可逆的锌阳极成为可能","authors":"Guanchong Mao,&nbsp;Pan Xu,&nbsp;Xin Liu,&nbsp;Xingyu Zhao,&nbsp;Zexiang Shen,&nbsp;Dongliang Chao,&nbsp;Minghua Chen","doi":"10.1007/s40820-025-01889-9","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The introduction of low-cost, low-reduction-potential Na<sup>+</sup> into aqueous Zn-based battery electrolytes suppresses Zn<sup>2+</sup> aggregation at the anode interface through preferential Na<sup>+</sup> adsorption and inter-cationic electrostatic repulsion, thereby enabling homogeneous Zn deposition and significantly enhanced low-temperature reversibility of Zn anodes.</p>\n </li>\n <li>\n <p>Na<sup>+</sup> with low ionic potential spontaneously adsorbs at the anode–electrolyte interface, effectively reducing solvated water molecules and suppressing parasitic reactions, thus significantly improving the Coulombic efficiency of aqueous zinc metal batteries under low temperatures.</p>\n </li>\n <li>\n <p>At a low temperature of − 40 °C, the Zn||Zn cells maintained stable plating/stripping cycles for over 2500 h, and the Zn||PANI full cell exhibited excellent low-temperature performance with over 8000 charge–discharge cycles and a high capacity retention of more than 90%.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01889-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Prioritized Na+ Adsorption-Driven Cationic Electrostatic Repulsion Enables Highly Reversible Zinc Anodes at Low Temperatures\",\"authors\":\"Guanchong Mao,&nbsp;Pan Xu,&nbsp;Xin Liu,&nbsp;Xingyu Zhao,&nbsp;Zexiang Shen,&nbsp;Dongliang Chao,&nbsp;Minghua Chen\",\"doi\":\"10.1007/s40820-025-01889-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>The introduction of low-cost, low-reduction-potential Na<sup>+</sup> into aqueous Zn-based battery electrolytes suppresses Zn<sup>2+</sup> aggregation at the anode interface through preferential Na<sup>+</sup> adsorption and inter-cationic electrostatic repulsion, thereby enabling homogeneous Zn deposition and significantly enhanced low-temperature reversibility of Zn anodes.</p>\\n </li>\\n <li>\\n <p>Na<sup>+</sup> with low ionic potential spontaneously adsorbs at the anode–electrolyte interface, effectively reducing solvated water molecules and suppressing parasitic reactions, thus significantly improving the Coulombic efficiency of aqueous zinc metal batteries under low temperatures.</p>\\n </li>\\n <li>\\n <p>At a low temperature of − 40 °C, the Zn||Zn cells maintained stable plating/stripping cycles for over 2500 h, and the Zn||PANI full cell exhibited excellent low-temperature performance with over 8000 charge–discharge cycles and a high capacity retention of more than 90%.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01889-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01889-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01889-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

将低成本、低还原电位的Na+引入到锌基电池水溶液中,通过优先吸附Na+和阳离子间静电斥力抑制Zn2+在阳极界面的聚集,从而实现均匀的Zn沉积,显著增强Zn阳极的低温可逆性。低离子电位的Na+在阳极-电解质界面自发吸附,有效减少溶剂化水分子,抑制寄生反应,从而显著提高低温下锌金属水电池的库仑效率。在−40℃的低温条件下,Zn||电池的镀剥循环时间超过2500 h, Zn||PANI电池的低温性能优异,充放电循环次数超过8000次,容量保持率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritized Na+ Adsorption-Driven Cationic Electrostatic Repulsion Enables Highly Reversible Zinc Anodes at Low Temperatures

Highlights

  • The introduction of low-cost, low-reduction-potential Na+ into aqueous Zn-based battery electrolytes suppresses Zn2+ aggregation at the anode interface through preferential Na+ adsorption and inter-cationic electrostatic repulsion, thereby enabling homogeneous Zn deposition and significantly enhanced low-temperature reversibility of Zn anodes.

  • Na+ with low ionic potential spontaneously adsorbs at the anode–electrolyte interface, effectively reducing solvated water molecules and suppressing parasitic reactions, thus significantly improving the Coulombic efficiency of aqueous zinc metal batteries under low temperatures.

  • At a low temperature of − 40 °C, the Zn||Zn cells maintained stable plating/stripping cycles for over 2500 h, and the Zn||PANI full cell exhibited excellent low-temperature performance with over 8000 charge–discharge cycles and a high capacity retention of more than 90%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信