{"title":"相关随机矩阵的尖普适性","authors":"László Erdős, Joscha Henheik, Volodymyr Riabov","doi":"10.1007/s00220-025-05417-z","DOIUrl":null,"url":null,"abstract":"<div><p>For correlated real symmetric or complex Hermitian random matrices, we prove that the local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the Wigner–Dyson–Mehta universality conjecture in all spectral regimes for a very general class of random matrices. Previously only the bulk and the edge universality were established in this generality (Alt et al. in Ann Probab 48(2):963–1001, 2020), while cusp universality was proven only for Wigner-type matrices with independent entries (Cipolloni et al. in Pure Appl Anal 1:615–707, 2019; Erdős et al. in Commun. Math. Phys. 378:1203–1278, 2018). As our main technical input, we prove an optimal local law at the cusp using the <i>Zigzag strategy</i>, a recursive tandem of the characteristic flow method and a Green function comparison argument. Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus we also provide a significantly simplified alternative proof of the local eigenvalue universality in the previously studied bulk (Erdős et al. in Forum Math. Sigma 7:E8, 2019) and edge (Alt et al. in Ann Probab 48(2):963–1001, 2020) regimes.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05417-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Cusp Universality for Correlated Random Matrices\",\"authors\":\"László Erdős, Joscha Henheik, Volodymyr Riabov\",\"doi\":\"10.1007/s00220-025-05417-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For correlated real symmetric or complex Hermitian random matrices, we prove that the local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the Wigner–Dyson–Mehta universality conjecture in all spectral regimes for a very general class of random matrices. Previously only the bulk and the edge universality were established in this generality (Alt et al. in Ann Probab 48(2):963–1001, 2020), while cusp universality was proven only for Wigner-type matrices with independent entries (Cipolloni et al. in Pure Appl Anal 1:615–707, 2019; Erdős et al. in Commun. Math. Phys. 378:1203–1278, 2018). As our main technical input, we prove an optimal local law at the cusp using the <i>Zigzag strategy</i>, a recursive tandem of the characteristic flow method and a Green function comparison argument. Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus we also provide a significantly simplified alternative proof of the local eigenvalue universality in the previously studied bulk (Erdős et al. in Forum Math. Sigma 7:E8, 2019) and edge (Alt et al. in Ann Probab 48(2):963–1001, 2020) regimes.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05417-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05417-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05417-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
对于相关实对称或复厄米随机矩阵,证明了其在任意尖点奇点处的局部特征值统计量是普遍的。由于状态密度通常只表现出平方根边或三次方根尖的奇异性,我们的结果完成了对一类非常一般的随机矩阵在所有谱域的Wigner-Dyson-Mehta普适猜想的证明。以前,在这种一般性中只建立了主体和边缘普遍性(Alt等人在Ann Probab 48(2): 963-1001, 2020),而只证明了具有独立条目的wigner型矩阵的尖端普遍性(Cipolloni等人在Pure applal Anal 1:615-707, 2019; Erdős等人在commons中。数学。物理学报(英文版),2018)。作为我们的主要技术投入,我们使用之字形策略、特征流法的递归串联和格林函数比较论证证明了尖端的最优局部律。此外,我们对最优局部律的证明在谱中是一致的,因此我们也提供了一个显著简化的局部特征值普适性的替代证明(Erdős等人在Forum Math中)。Sigma 7:E8, 2019)和edge (Alt et al. in Ann Probab 48(2): 963-1001, 2020)机制。
For correlated real symmetric or complex Hermitian random matrices, we prove that the local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the Wigner–Dyson–Mehta universality conjecture in all spectral regimes for a very general class of random matrices. Previously only the bulk and the edge universality were established in this generality (Alt et al. in Ann Probab 48(2):963–1001, 2020), while cusp universality was proven only for Wigner-type matrices with independent entries (Cipolloni et al. in Pure Appl Anal 1:615–707, 2019; Erdős et al. in Commun. Math. Phys. 378:1203–1278, 2018). As our main technical input, we prove an optimal local law at the cusp using the Zigzag strategy, a recursive tandem of the characteristic flow method and a Green function comparison argument. Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus we also provide a significantly simplified alternative proof of the local eigenvalue universality in the previously studied bulk (Erdős et al. in Forum Math. Sigma 7:E8, 2019) and edge (Alt et al. in Ann Probab 48(2):963–1001, 2020) regimes.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.