{"title":"在印度西北部集约化谷物系统中通过气候智能型农业实践实现环境管理:对能源-水-碳足迹的影响","authors":"Hanuman Sahay Jat , Kailash Prajapat , Shivani Khokhar , Madhu Choudhary , Manish Kakraliya , Tanuja Poonia , Kailash Chandra Kalwania , Prabodh Chander Sharma , Mangi Lal Jat","doi":"10.1016/j.nexus.2025.100509","DOIUrl":null,"url":null,"abstract":"<div><div>Intensive rice-based systems in the Indo-Gangetic Plain of India face critical sustainability challenges, including high energy use, excessive greenhouse gas (GHG) emissions, and unsustainable groundwater exploitation. This study evaluates productivity and environmental footprints (energy, water, and carbon) to foster environmental stewardship through conservation agriculture-based climate-smart agriculture practices (CSAPs). Six scenarios (<em>Sc</em>) were analyzed: conventional till (CT) rice-wheat (CT-RW, <em>Sc</em> 1); CT rice-zero till (ZT) wheat-ZT mungbean (CTR-ZTWM, <em>Sc</em> 2); ZT direct-seeded rice-ZTWM (ZTRWM, <em>Sc</em> 3); ZT maize-ZTWM (ZTMWM, <em>Sc</em> 4); <em>Sc</em> 3 with subsurface drip (SSD) irrigation (ZTRWM-SSD, <em>Sc</em> 5); and <em>Sc</em> 4 with SSD (ZTMWM-SSD, <em>Sc</em> 6). The CSAPs (<em>Sc</em> 3-<em>Sc</em> 6) outperformed <em>Sc</em> 1 with respect to key performance parameters. <em>Sc</em> 6 (ZTMWM-SSD) achieved the maximum rice equivalent yield (8.25 t ha⁻¹), a 22.2 % increase over <em>Sc</em> 1. Wheat yield in <em>Sc</em> 6 reached to 6.34 t ha⁻¹, corresponding to a 22.1 % enhancement compared to <em>Sc</em> 1, resulting in a total system yield of 16.73 t ha⁻¹, representing a 35.6 % increase over <em>Sc</em> 1. For system-wide partial factor productivity of N, <em>Sc</em> 5 showed 51.4 % improvement, while <em>Sc</em> 6 achieved the highest increase of 69.7 %, reflecting significant gains in nitrogen use efficiency. The CSAPs scenarios markedly improved system water productivity, resulting in a decreased water footprint, which was lowest in <em>Sc</em> 6 (189 L kg⁻¹) compared to <em>Sc</em> 1 (1642 L kg⁻¹). Energy dynamics revealed that <em>Sc</em> 6 was the most efficient among all the scenarios. With an energy input of 30,360 MJ ha⁻¹, it produced energy output of 471,633 MJ ha⁻¹, and recorded the highest energy use efficiency (15.69). In terms of environmental sustainability, CSAPs (<em>Sc</em> 3, <em>Sc</em> 4, <em>Sc</em> 5 and <em>Sc</em> 6) exhibited lower system net global warming potential (GWP<sub>n</sub>), compared to CT-based scenarios (<em>Sc</em> 1 and <em>Sc</em> 2), reflecting a significantly reduced carbon footprint. These results highlight the potential of CSAPs to enhance productivity and profitability while minimizing environmental impacts, making CSAPs critical to the future of sustainable agriculture in North-western India.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"19 ","pages":"Article 100509"},"PeriodicalIF":9.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving environmental stewardship through climate-smart agriculture practices in intensive cereal systems of North-western India: Effects on energy-water-carbon footprints\",\"authors\":\"Hanuman Sahay Jat , Kailash Prajapat , Shivani Khokhar , Madhu Choudhary , Manish Kakraliya , Tanuja Poonia , Kailash Chandra Kalwania , Prabodh Chander Sharma , Mangi Lal Jat\",\"doi\":\"10.1016/j.nexus.2025.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intensive rice-based systems in the Indo-Gangetic Plain of India face critical sustainability challenges, including high energy use, excessive greenhouse gas (GHG) emissions, and unsustainable groundwater exploitation. This study evaluates productivity and environmental footprints (energy, water, and carbon) to foster environmental stewardship through conservation agriculture-based climate-smart agriculture practices (CSAPs). Six scenarios (<em>Sc</em>) were analyzed: conventional till (CT) rice-wheat (CT-RW, <em>Sc</em> 1); CT rice-zero till (ZT) wheat-ZT mungbean (CTR-ZTWM, <em>Sc</em> 2); ZT direct-seeded rice-ZTWM (ZTRWM, <em>Sc</em> 3); ZT maize-ZTWM (ZTMWM, <em>Sc</em> 4); <em>Sc</em> 3 with subsurface drip (SSD) irrigation (ZTRWM-SSD, <em>Sc</em> 5); and <em>Sc</em> 4 with SSD (ZTMWM-SSD, <em>Sc</em> 6). The CSAPs (<em>Sc</em> 3-<em>Sc</em> 6) outperformed <em>Sc</em> 1 with respect to key performance parameters. <em>Sc</em> 6 (ZTMWM-SSD) achieved the maximum rice equivalent yield (8.25 t ha⁻¹), a 22.2 % increase over <em>Sc</em> 1. Wheat yield in <em>Sc</em> 6 reached to 6.34 t ha⁻¹, corresponding to a 22.1 % enhancement compared to <em>Sc</em> 1, resulting in a total system yield of 16.73 t ha⁻¹, representing a 35.6 % increase over <em>Sc</em> 1. For system-wide partial factor productivity of N, <em>Sc</em> 5 showed 51.4 % improvement, while <em>Sc</em> 6 achieved the highest increase of 69.7 %, reflecting significant gains in nitrogen use efficiency. The CSAPs scenarios markedly improved system water productivity, resulting in a decreased water footprint, which was lowest in <em>Sc</em> 6 (189 L kg⁻¹) compared to <em>Sc</em> 1 (1642 L kg⁻¹). Energy dynamics revealed that <em>Sc</em> 6 was the most efficient among all the scenarios. With an energy input of 30,360 MJ ha⁻¹, it produced energy output of 471,633 MJ ha⁻¹, and recorded the highest energy use efficiency (15.69). In terms of environmental sustainability, CSAPs (<em>Sc</em> 3, <em>Sc</em> 4, <em>Sc</em> 5 and <em>Sc</em> 6) exhibited lower system net global warming potential (GWP<sub>n</sub>), compared to CT-based scenarios (<em>Sc</em> 1 and <em>Sc</em> 2), reflecting a significantly reduced carbon footprint. These results highlight the potential of CSAPs to enhance productivity and profitability while minimizing environmental impacts, making CSAPs critical to the future of sustainable agriculture in North-western India.</div></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"19 \",\"pages\":\"Article 100509\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427125001500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125001500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
印度印度河-恒河平原的集约化水稻系统面临着严峻的可持续性挑战,包括能源消耗高、温室气体(GHG)排放过多以及不可持续的地下水开采。本研究评估了生产力和环境足迹(能源、水和碳),以通过基于保护农业的气候智慧型农业实践(csap)促进环境管理。分析了6种情景(Sc):常规耕作(CT)稻麦(CT- rw, Sc 1);CT水稻-零耕(ZT)小麦-ZT绿豆(cr - ztwm, Sc 2);直播稻- ztwm (ZTRWM, sc3);ZT玉米- ztwm (ZTMWM, sc4);sc3采用地下滴灌(ZTRWM-SSD, sc5);sc4带SSD (ZTMWM-SSD, sc6)。csap (Sc 3-Sc 6)在关键性能参数方面优于Sc 1。sc6 (ZTMWM-SSD)达到了最高的水稻当量产量(8.25 t ha - 1),比sc1增加22.2%。Sc 6的小麦产量达到6.34 t ha⁻¹,相应提高22.1% Sc 1相比,导致整个系统产量16.73吨ha⁻¹,代表/ Sc 1增加了35.6%。在全系统氮部分要素生产率方面,sc5提高了51.4%,而sc6提高了69.7%,反映了氮素利用效率的显著提高。caps方案显著提高了系统的水生产力,导致水足迹减少,在sc6 (189 L kg⁻¹)与sc1 (1642 L kg⁻¹)相比,水足迹最低。能量动力学表明,sc6是所有方案中效率最高的。它的能量输入为30360 MJ ha - 1,产生的能量输出为471633 MJ ha - 1,能量利用效率最高(15.69)。在环境可持续性方面,与基于ct的情景(Sc 1和Sc 2)相比,csp (Sc 3、Sc 4、Sc 5和Sc 6)表现出较低的系统净全球变暖潜势(GWPn),反映了碳足迹的显著减少。这些结果突出了caps在提高生产力和盈利能力的同时最大限度地减少环境影响的潜力,使caps对印度西北部可持续农业的未来至关重要。
Achieving environmental stewardship through climate-smart agriculture practices in intensive cereal systems of North-western India: Effects on energy-water-carbon footprints
Intensive rice-based systems in the Indo-Gangetic Plain of India face critical sustainability challenges, including high energy use, excessive greenhouse gas (GHG) emissions, and unsustainable groundwater exploitation. This study evaluates productivity and environmental footprints (energy, water, and carbon) to foster environmental stewardship through conservation agriculture-based climate-smart agriculture practices (CSAPs). Six scenarios (Sc) were analyzed: conventional till (CT) rice-wheat (CT-RW, Sc 1); CT rice-zero till (ZT) wheat-ZT mungbean (CTR-ZTWM, Sc 2); ZT direct-seeded rice-ZTWM (ZTRWM, Sc 3); ZT maize-ZTWM (ZTMWM, Sc 4); Sc 3 with subsurface drip (SSD) irrigation (ZTRWM-SSD, Sc 5); and Sc 4 with SSD (ZTMWM-SSD, Sc 6). The CSAPs (Sc 3-Sc 6) outperformed Sc 1 with respect to key performance parameters. Sc 6 (ZTMWM-SSD) achieved the maximum rice equivalent yield (8.25 t ha⁻¹), a 22.2 % increase over Sc 1. Wheat yield in Sc 6 reached to 6.34 t ha⁻¹, corresponding to a 22.1 % enhancement compared to Sc 1, resulting in a total system yield of 16.73 t ha⁻¹, representing a 35.6 % increase over Sc 1. For system-wide partial factor productivity of N, Sc 5 showed 51.4 % improvement, while Sc 6 achieved the highest increase of 69.7 %, reflecting significant gains in nitrogen use efficiency. The CSAPs scenarios markedly improved system water productivity, resulting in a decreased water footprint, which was lowest in Sc 6 (189 L kg⁻¹) compared to Sc 1 (1642 L kg⁻¹). Energy dynamics revealed that Sc 6 was the most efficient among all the scenarios. With an energy input of 30,360 MJ ha⁻¹, it produced energy output of 471,633 MJ ha⁻¹, and recorded the highest energy use efficiency (15.69). In terms of environmental sustainability, CSAPs (Sc 3, Sc 4, Sc 5 and Sc 6) exhibited lower system net global warming potential (GWPn), compared to CT-based scenarios (Sc 1 and Sc 2), reflecting a significantly reduced carbon footprint. These results highlight the potential of CSAPs to enhance productivity and profitability while minimizing environmental impacts, making CSAPs critical to the future of sustainable agriculture in North-western India.
Energy nexusEnergy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)