两相粘弹性流体混合模型的自适应网格细化

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bindi M. Nagda , Aaron Barrett , Boyce E. Griffith , Aaron L. Fogelson , Jian Du
{"title":"两相粘弹性流体混合模型的自适应网格细化","authors":"Bindi M. Nagda ,&nbsp;Aaron Barrett ,&nbsp;Boyce E. Griffith ,&nbsp;Aaron L. Fogelson ,&nbsp;Jian Du","doi":"10.1016/j.compfluid.2025.106772","DOIUrl":null,"url":null,"abstract":"<div><div>Multiphase flows are an important class of fluid flow, and their study facilitates the development of diverse applications in industrial, natural, and biomedical systems. We consider a model that uses a continuum description of both phases in which separate momentum equations are used for each phase along with a co-incompressibility condition on the velocity fields. The resulting system of equations poses numerical challenges because of the presence of multiple non-linear terms and the co-incompressibility condition, and the resulting fluid dynamics motivate the development of an adaptive mesh refinement (AMR) technique to accurately capture regions of high stresses and large material gradients while keeping computational costs low. We present an accurate, robust, and efficient computational method for simulating multiphase mixtures on adaptive grids, and utilize a multigrid solver to precondition the saddle-point system. We demonstrate that the AMR discretization asymptotically approaches second order accuracy in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> norms. The solver can accurately resolve sharp gradients in the solution and, with the multigrid preconditioning strategy introduced herein, the linear solver iterations are independent of grid spacing. Our AMR solver offers a major cost savings benefit, providing up to ten fold speedup over a uniform grid in the numerical experiments presented here, with greater speedup possible depending on the problem set-up.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"301 ","pages":"Article 106772"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive mesh refinement for two-phase viscoelastic fluid mixture models\",\"authors\":\"Bindi M. Nagda ,&nbsp;Aaron Barrett ,&nbsp;Boyce E. Griffith ,&nbsp;Aaron L. Fogelson ,&nbsp;Jian Du\",\"doi\":\"10.1016/j.compfluid.2025.106772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiphase flows are an important class of fluid flow, and their study facilitates the development of diverse applications in industrial, natural, and biomedical systems. We consider a model that uses a continuum description of both phases in which separate momentum equations are used for each phase along with a co-incompressibility condition on the velocity fields. The resulting system of equations poses numerical challenges because of the presence of multiple non-linear terms and the co-incompressibility condition, and the resulting fluid dynamics motivate the development of an adaptive mesh refinement (AMR) technique to accurately capture regions of high stresses and large material gradients while keeping computational costs low. We present an accurate, robust, and efficient computational method for simulating multiphase mixtures on adaptive grids, and utilize a multigrid solver to precondition the saddle-point system. We demonstrate that the AMR discretization asymptotically approaches second order accuracy in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> norms. The solver can accurately resolve sharp gradients in the solution and, with the multigrid preconditioning strategy introduced herein, the linear solver iterations are independent of grid spacing. Our AMR solver offers a major cost savings benefit, providing up to ten fold speedup over a uniform grid in the numerical experiments presented here, with greater speedup possible depending on the problem set-up.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"301 \",\"pages\":\"Article 106772\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025002324\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002324","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多相流是一类重要的流体流动,其研究促进了在工业、自然和生物医学系统中的各种应用的发展。我们考虑了一个模型,该模型使用两个相的连续描述,其中每个相使用单独的动量方程以及速度场的共不可压缩条件。由于存在多个非线性项和共不可压缩条件,由此产生的方程组提出了数值挑战,并且由此产生的流体动力学激励了自适应网格细化(AMR)技术的发展,以准确捕获高应力和大材料梯度的区域,同时保持低计算成本。本文提出了一种精确、鲁棒、高效的自适应网格多相混合模拟计算方法,并利用多网格求解器对鞍点系统进行了预处理。我们证明了AMR离散化在L1、L2和L∞范数上渐近接近二阶精度。求解器可以准确地分辨出解中的尖锐梯度,并且通过引入多网格预处理策略,求解器的线性迭代不受网格间距的影响。我们的AMR求解器提供了一个主要的成本节约优势,在这里提供的数值实验中,在均匀网格上提供高达10倍的加速,根据问题设置可能有更大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive mesh refinement for two-phase viscoelastic fluid mixture models
Multiphase flows are an important class of fluid flow, and their study facilitates the development of diverse applications in industrial, natural, and biomedical systems. We consider a model that uses a continuum description of both phases in which separate momentum equations are used for each phase along with a co-incompressibility condition on the velocity fields. The resulting system of equations poses numerical challenges because of the presence of multiple non-linear terms and the co-incompressibility condition, and the resulting fluid dynamics motivate the development of an adaptive mesh refinement (AMR) technique to accurately capture regions of high stresses and large material gradients while keeping computational costs low. We present an accurate, robust, and efficient computational method for simulating multiphase mixtures on adaptive grids, and utilize a multigrid solver to precondition the saddle-point system. We demonstrate that the AMR discretization asymptotically approaches second order accuracy in L1, L2 and L norms. The solver can accurately resolve sharp gradients in the solution and, with the multigrid preconditioning strategy introduced herein, the linear solver iterations are independent of grid spacing. Our AMR solver offers a major cost savings benefit, providing up to ten fold speedup over a uniform grid in the numerical experiments presented here, with greater speedup possible depending on the problem set-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信