贴近生活

IF 6 2区 生物学 Q1 CELL BIOLOGY
Rob Phillips
{"title":"贴近生活","authors":"Rob Phillips","doi":"10.1016/j.semcdb.2025.103646","DOIUrl":null,"url":null,"abstract":"<div><div>Is a herd of wildebeest better thought of as a series of individual animals, each with its own glorious and unmanageable volition, or as a field of moving arrows? Are the morphogen gradients that set up the coordinate systems for embryonic anterior–posterior patterning a smooth and continuous concentration field or instead a chaotic collection of protein molecules each jiggling about in the haphazard way first described by Robert Brown in his microscopical observations of pollen? Is water, the great liquid ether of the living world, a collection of discrete molecules or instead a perfectly continuous medium with a density of <span><math><mo>≈</mo></math></span>1000 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>? In this article, I will argue that these questions pose a false dichotomy since there are many different and powerful representations of the world around us. Different representations suit us differently at different times and it is often useful to be able to hold these seemingly contradictory notions in our heads simultaneously. Indeed, mathematics is not only the language of representation, but often is also the engine of reconciliation of such disparate views. In a letter to Alfred Russel Wallace on 14 April 1869, Charles Darwin noted that Lord Kelvin’s “views on the recent age of the world have been for some time one of my sorest troubles”. Here, I will argue that one of the highest attainments of the scientific enterprise is a coherent picture of the world, a picture in which our stories about the geological age of the Earth are coherent with our stories of how whales populated the oceans, our understanding of the living jibes with our understanding of the inanimate, our insights into the dynamics of genes and molecular structures are consonant with our physical understanding of the laws of statistical physics. The underpinnings of such coherency are often best revealed when viewed through the lens of mathematics.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"175 ","pages":"Article 103646"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the living\",\"authors\":\"Rob Phillips\",\"doi\":\"10.1016/j.semcdb.2025.103646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Is a herd of wildebeest better thought of as a series of individual animals, each with its own glorious and unmanageable volition, or as a field of moving arrows? Are the morphogen gradients that set up the coordinate systems for embryonic anterior–posterior patterning a smooth and continuous concentration field or instead a chaotic collection of protein molecules each jiggling about in the haphazard way first described by Robert Brown in his microscopical observations of pollen? Is water, the great liquid ether of the living world, a collection of discrete molecules or instead a perfectly continuous medium with a density of <span><math><mo>≈</mo></math></span>1000 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>? In this article, I will argue that these questions pose a false dichotomy since there are many different and powerful representations of the world around us. Different representations suit us differently at different times and it is often useful to be able to hold these seemingly contradictory notions in our heads simultaneously. Indeed, mathematics is not only the language of representation, but often is also the engine of reconciliation of such disparate views. In a letter to Alfred Russel Wallace on 14 April 1869, Charles Darwin noted that Lord Kelvin’s “views on the recent age of the world have been for some time one of my sorest troubles”. Here, I will argue that one of the highest attainments of the scientific enterprise is a coherent picture of the world, a picture in which our stories about the geological age of the Earth are coherent with our stories of how whales populated the oceans, our understanding of the living jibes with our understanding of the inanimate, our insights into the dynamics of genes and molecular structures are consonant with our physical understanding of the laws of statistical physics. The underpinnings of such coherency are often best revealed when viewed through the lens of mathematics.</div></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"175 \",\"pages\":\"Article 103646\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084952125000564\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952125000564","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一群角马应该被看作是一系列独立的动物,每只动物都有自己辉煌而难以控制的意志,还是一大片移动的箭?为胚胎前后模式建立坐标系统的形态发生梯度是一个平滑而连续的浓度场,还是像罗伯特·布朗在他对花粉的显微镜观察中首次描述的那样,是一组杂乱无章的蛋白质分子,每个分子都以随意的方式摇摆?水,生命世界中最伟大的液体醚,是离散分子的集合,还是密度为≈1000kg /m3的完美连续介质?在这篇文章中,我将论证这些问题构成了一个错误的二分法,因为我们周围的世界有许多不同且强大的表征。不同的表象在不同的时间适合我们,能够同时在我们的头脑中持有这些看似矛盾的概念通常是有用的。事实上,数学不仅是表达的语言,而且常常是调和这些不同观点的引擎。1869年4月14日,查尔斯·达尔文在给阿尔弗雷德·罗素·华莱士的一封信中指出,开尔文勋爵“对近代世界的看法一度是我最头疼的问题之一”。在这里,我想说的是,科学事业的最高成就之一是一幅连贯的世界图景,在这幅图景中,我们关于地球地质年代的故事与我们关于鲸鱼如何在海洋中繁衍的故事是一致的,我们对生物的理解与我们对无生命的理解是一致的,我们对基因和分子结构动力学的见解与我们对统计物理定律的物理理解是一致的。从数学的角度来看,这种一致性的基础往往是最好的揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating the living
Is a herd of wildebeest better thought of as a series of individual animals, each with its own glorious and unmanageable volition, or as a field of moving arrows? Are the morphogen gradients that set up the coordinate systems for embryonic anterior–posterior patterning a smooth and continuous concentration field or instead a chaotic collection of protein molecules each jiggling about in the haphazard way first described by Robert Brown in his microscopical observations of pollen? Is water, the great liquid ether of the living world, a collection of discrete molecules or instead a perfectly continuous medium with a density of 1000 kg/m3? In this article, I will argue that these questions pose a false dichotomy since there are many different and powerful representations of the world around us. Different representations suit us differently at different times and it is often useful to be able to hold these seemingly contradictory notions in our heads simultaneously. Indeed, mathematics is not only the language of representation, but often is also the engine of reconciliation of such disparate views. In a letter to Alfred Russel Wallace on 14 April 1869, Charles Darwin noted that Lord Kelvin’s “views on the recent age of the world have been for some time one of my sorest troubles”. Here, I will argue that one of the highest attainments of the scientific enterprise is a coherent picture of the world, a picture in which our stories about the geological age of the Earth are coherent with our stories of how whales populated the oceans, our understanding of the living jibes with our understanding of the inanimate, our insights into the dynamics of genes and molecular structures are consonant with our physical understanding of the laws of statistical physics. The underpinnings of such coherency are often best revealed when viewed through the lens of mathematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.10
自引率
1.40%
发文量
310
审稿时长
9.1 weeks
期刊介绍: Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications. The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信