利用马尔可夫转换分析探讨森林资源枯竭

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Lahcen Boulaasair , Namana Seshagiri Rao , Hassane Bouzahir , Salma Haque , Nabil Mlaiki
{"title":"利用马尔可夫转换分析探讨森林资源枯竭","authors":"Lahcen Boulaasair ,&nbsp;Namana Seshagiri Rao ,&nbsp;Hassane Bouzahir ,&nbsp;Salma Haque ,&nbsp;Nabil Mlaiki","doi":"10.1016/j.sciaf.2025.e02909","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a mathematical model to explore forest resource depletion, integrating the dynamics of forest growth, rapid industrialization, and demographic expansion. Unlike prior literature, which predominantly relies on deterministic frameworks, our approach employs stochastic mathematical techniques to embed regime switching within differential equations, driven by irreducible Markov chains with an ergodic stationary distribution. Initially, the deterministic core of the stochastic model, excluding Markov chains, is analyzed by identifying equilibrium points and assessing their asymptotic stability analytically. The well-posedness of the stochastic system with Markov switching is then established, proving the existence and uniqueness of a positive solution. The asymptotic dynamics are subsequently investigated to pinpoint critical thresholds governing resource depletion or sustainability. This pioneering use of stochastic calculus unveils complex interactions overlooked by traditional deterministic models, constituting the primary contribution of this work. Numerical simulations substantiate the theoretical findings, offering a precise quantitative depiction of the system’s behavior and confirming the analytical implications. The results provide a basis for sustainable management policies, recommending external regulatory actions and controlled population pressure to maintain ecological equilibrium and prevent resource depletion. The research underscores the importance of integrating such stochastic methods for more realistic ecological forecasting and policy-making.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02909"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring forest resources depletion through Markov switching analysis\",\"authors\":\"Lahcen Boulaasair ,&nbsp;Namana Seshagiri Rao ,&nbsp;Hassane Bouzahir ,&nbsp;Salma Haque ,&nbsp;Nabil Mlaiki\",\"doi\":\"10.1016/j.sciaf.2025.e02909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper develops a mathematical model to explore forest resource depletion, integrating the dynamics of forest growth, rapid industrialization, and demographic expansion. Unlike prior literature, which predominantly relies on deterministic frameworks, our approach employs stochastic mathematical techniques to embed regime switching within differential equations, driven by irreducible Markov chains with an ergodic stationary distribution. Initially, the deterministic core of the stochastic model, excluding Markov chains, is analyzed by identifying equilibrium points and assessing their asymptotic stability analytically. The well-posedness of the stochastic system with Markov switching is then established, proving the existence and uniqueness of a positive solution. The asymptotic dynamics are subsequently investigated to pinpoint critical thresholds governing resource depletion or sustainability. This pioneering use of stochastic calculus unveils complex interactions overlooked by traditional deterministic models, constituting the primary contribution of this work. Numerical simulations substantiate the theoretical findings, offering a precise quantitative depiction of the system’s behavior and confirming the analytical implications. The results provide a basis for sustainable management policies, recommending external regulatory actions and controlled population pressure to maintain ecological equilibrium and prevent resource depletion. The research underscores the importance of integrating such stochastic methods for more realistic ecological forecasting and policy-making.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"29 \",\"pages\":\"Article e02909\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625003795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一个数学模型,结合森林生长、快速工业化和人口扩张的动态来探讨森林资源枯竭。与先前主要依赖于确定性框架的文献不同,我们的方法采用随机数学技术将状态切换嵌入微分方程中,由具有遍历平稳分布的不可约马尔可夫链驱动。首先,通过识别平衡点并分析其渐近稳定性,分析了随机模型的确定性核心,不包括马尔可夫链。建立了具有马尔可夫切换的随机系统的适定性,证明了其正解的存在唯一性。随后研究了渐近动力学,以确定控制资源枯竭或可持续性的临界阈值。这种开创性的随机演算揭示了传统确定性模型所忽视的复杂相互作用,构成了这项工作的主要贡献。数值模拟证实了理论发现,提供了系统行为的精确定量描述,并确认了分析意义。研究结果为可持续管理政策、建议外部调控行动和控制人口压力以维持生态平衡和防止资源枯竭提供了依据。该研究强调了将这些随机方法整合到更现实的生态预测和决策中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring forest resources depletion through Markov switching analysis
This paper develops a mathematical model to explore forest resource depletion, integrating the dynamics of forest growth, rapid industrialization, and demographic expansion. Unlike prior literature, which predominantly relies on deterministic frameworks, our approach employs stochastic mathematical techniques to embed regime switching within differential equations, driven by irreducible Markov chains with an ergodic stationary distribution. Initially, the deterministic core of the stochastic model, excluding Markov chains, is analyzed by identifying equilibrium points and assessing their asymptotic stability analytically. The well-posedness of the stochastic system with Markov switching is then established, proving the existence and uniqueness of a positive solution. The asymptotic dynamics are subsequently investigated to pinpoint critical thresholds governing resource depletion or sustainability. This pioneering use of stochastic calculus unveils complex interactions overlooked by traditional deterministic models, constituting the primary contribution of this work. Numerical simulations substantiate the theoretical findings, offering a precise quantitative depiction of the system’s behavior and confirming the analytical implications. The results provide a basis for sustainable management policies, recommending external regulatory actions and controlled population pressure to maintain ecological equilibrium and prevent resource depletion. The research underscores the importance of integrating such stochastic methods for more realistic ecological forecasting and policy-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信