四元数代数子集上的整数值多项式

IF 0.8 2区 数学 Q2 MATHEMATICS
Nicholas J. Werner
{"title":"四元数代数子集上的整数值多项式","authors":"Nicholas J. Werner","doi":"10.1016/j.jalgebra.2025.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be either the ring of Lipschitz quaternions, or the ring of Hurwitz quaternions. Then, <em>R</em> is a subring of the division ring <span><math><mi>D</mi></math></span> of rational quaternions. For <span><math><mi>S</mi><mo>⊆</mo><mi>R</mi></math></span>, we study the collection <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo><mo>|</mo><mi>f</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊆</mo><mi>R</mi><mo>}</mo></math></span> of polynomials that are integer-valued on <em>S</em>. The set <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> is always a left <em>R</em>-submodule of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, but need not be a subring of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. We say that <em>S</em> is a ringset of <em>R</em> if <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> is a subring of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. In this paper, we give a complete classification of the finite subsets of <em>R</em> that are ringsets.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 195-219"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer-valued polynomials on subsets of quaternion algebras\",\"authors\":\"Nicholas J. Werner\",\"doi\":\"10.1016/j.jalgebra.2025.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be either the ring of Lipschitz quaternions, or the ring of Hurwitz quaternions. Then, <em>R</em> is a subring of the division ring <span><math><mi>D</mi></math></span> of rational quaternions. For <span><math><mi>S</mi><mo>⊆</mo><mi>R</mi></math></span>, we study the collection <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo><mo>|</mo><mi>f</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊆</mo><mi>R</mi><mo>}</mo></math></span> of polynomials that are integer-valued on <em>S</em>. The set <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> is always a left <em>R</em>-submodule of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, but need not be a subring of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. We say that <em>S</em> is a ringset of <em>R</em> if <span><math><mrow><mi>Int</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> is a subring of <span><math><mi>D</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. In this paper, we give a complete classification of the finite subsets of <em>R</em> that are ringsets.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 195-219\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004879\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004879","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R为Lipschitz四元数环,或Hurwitz四元数环。则R是有理数四元数的除法环D的子环。对于S∈R,研究S上整数多项式的集合Int(S,R)={f∈D[x]|f(S)≠R},集合Int(S,R)始终是D[x]的左R子模,但不必是D[x]的子模。如果Int(S,R)是D[x]的子集,我们说S是R的环集。本文给出了R的有限子集环集的一个完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integer-valued polynomials on subsets of quaternion algebras
Let R be either the ring of Lipschitz quaternions, or the ring of Hurwitz quaternions. Then, R is a subring of the division ring D of rational quaternions. For SR, we study the collection Int(S,R)={fD[x]|f(S)R} of polynomials that are integer-valued on S. The set Int(S,R) is always a left R-submodule of D[x], but need not be a subring of D[x]. We say that S is a ringset of R if Int(S,R) is a subring of D[x]. In this paper, we give a complete classification of the finite subsets of R that are ringsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信