改进微细电阻抗层析仪电性能的金nanoparticles@graphene-modified电极的制备

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zahra Rezanejad Gatabi , Javad Gatabi , Mehri Mirhoseini
{"title":"改进微细电阻抗层析仪电性能的金nanoparticles@graphene-modified电极的制备","authors":"Zahra Rezanejad Gatabi ,&nbsp;Javad Gatabi ,&nbsp;Mehri Mirhoseini","doi":"10.1016/j.sna.2025.117018","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the critical influence of electrode interfacial properties on micro–electrical impedance tomography (Micro-EIT) system performance, we report a novel nanostructured electrode fabricated by one-step electrochemical co-electrodeposition of gold nanoparticles (AuNPs) onto graphene nanosheets. The resulting AuNPs@graphene-modified electrode exhibits a 2.1-fold increase in electroactive surface area compared to bare gold electrodes, along with a 62 % increase in double-layer capacitance and a 47 % decrease in charge transfer resistance. Electrochemical impedance spectroscopy confirms these enhancements, which correlate with significantly reduced impedance magnitude at frequencies above 50 kHz, measured by our lab-built Micro-EIT system. Integration of the modified electrodes with biological tissue (mouse liver) samples demonstrates improved electrical conductivity and stability, validating their suitability for high-frequency Micro-EIT imaging applications. These results underscore the synergistic effects of AuNPs and graphene in enhancing electrode performance for biomedical impedance imaging.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"395 ","pages":"Article 117018"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of gold nanoparticles@graphene-modified electrode for improving the electrical performance of micro electrical impedance tomography instrument\",\"authors\":\"Zahra Rezanejad Gatabi ,&nbsp;Javad Gatabi ,&nbsp;Mehri Mirhoseini\",\"doi\":\"10.1016/j.sna.2025.117018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the critical influence of electrode interfacial properties on micro–electrical impedance tomography (Micro-EIT) system performance, we report a novel nanostructured electrode fabricated by one-step electrochemical co-electrodeposition of gold nanoparticles (AuNPs) onto graphene nanosheets. The resulting AuNPs@graphene-modified electrode exhibits a 2.1-fold increase in electroactive surface area compared to bare gold electrodes, along with a 62 % increase in double-layer capacitance and a 47 % decrease in charge transfer resistance. Electrochemical impedance spectroscopy confirms these enhancements, which correlate with significantly reduced impedance magnitude at frequencies above 50 kHz, measured by our lab-built Micro-EIT system. Integration of the modified electrodes with biological tissue (mouse liver) samples demonstrates improved electrical conductivity and stability, validating their suitability for high-frequency Micro-EIT imaging applications. These results underscore the synergistic effects of AuNPs and graphene in enhancing electrode performance for biomedical impedance imaging.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"395 \",\"pages\":\"Article 117018\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725008246\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725008246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于电极界面特性对微电阻抗断层扫描(微eit)系统性能的关键影响,我们报道了一种新的纳米结构电极,通过一步电化学共电沉积金纳米粒子(AuNPs)到石墨烯纳米片上。与裸金电极相比,所得AuNPs@graphene-modified电极的电活性表面积增加了2.1倍,双层电容增加了62 %,电荷转移电阻降低了47 %。电化学阻抗谱证实了这些增强,通过实验室构建的Micro-EIT系统测量,在频率高于50 kHz时,阻抗值显著降低。将修饰电极与生物组织(小鼠肝脏)样品集成,证明了其导电性和稳定性的提高,验证了其对高频微电成像应用的适用性。这些结果强调了AuNPs和石墨烯在增强生物医学阻抗成像电极性能方面的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of gold nanoparticles@graphene-modified electrode for improving the electrical performance of micro electrical impedance tomography instrument
Due to the critical influence of electrode interfacial properties on micro–electrical impedance tomography (Micro-EIT) system performance, we report a novel nanostructured electrode fabricated by one-step electrochemical co-electrodeposition of gold nanoparticles (AuNPs) onto graphene nanosheets. The resulting AuNPs@graphene-modified electrode exhibits a 2.1-fold increase in electroactive surface area compared to bare gold electrodes, along with a 62 % increase in double-layer capacitance and a 47 % decrease in charge transfer resistance. Electrochemical impedance spectroscopy confirms these enhancements, which correlate with significantly reduced impedance magnitude at frequencies above 50 kHz, measured by our lab-built Micro-EIT system. Integration of the modified electrodes with biological tissue (mouse liver) samples demonstrates improved electrical conductivity and stability, validating their suitability for high-frequency Micro-EIT imaging applications. These results underscore the synergistic effects of AuNPs and graphene in enhancing electrode performance for biomedical impedance imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信