{"title":"椭圆曲线高阶ζ的杂散和Sato-Tate猜想","authors":"Zhan Shi , Lin Weng","doi":"10.1016/j.jnt.2025.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>For elliptic curves over rationals, there are a well-known conjecture of Sato–Tate and a new computational guided murmuration phenomenon, for which the abelian Artin zeta functions are used. In this paper, we show that both the murmurations and the Sato–Tate conjecture stand equally well for non-abelian high rank zeta functions of the <em>p</em>-reductions of elliptic curves over rationals. We establish our results by carefully examining asymptotic behaviors of the <em>p</em>-reduction invariants <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, the rank <em>n</em> analogous of the rank one <em>a</em>-invariant <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>p</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msub></math></span> of elliptic curve <span><math><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Such asymptotic results are based on a ‘counting miracle’ of the so-called <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>- and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>-invariants of <span><math><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in rank <em>n</em>, and a remarkable recursive relation on the <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>-invariants, both established by Weng–Zagier in <span><span>[22]</span></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 948-968"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Murmurations and Sato–Tate conjectures for high rank zetas of elliptic curves\",\"authors\":\"Zhan Shi , Lin Weng\",\"doi\":\"10.1016/j.jnt.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For elliptic curves over rationals, there are a well-known conjecture of Sato–Tate and a new computational guided murmuration phenomenon, for which the abelian Artin zeta functions are used. In this paper, we show that both the murmurations and the Sato–Tate conjecture stand equally well for non-abelian high rank zeta functions of the <em>p</em>-reductions of elliptic curves over rationals. We establish our results by carefully examining asymptotic behaviors of the <em>p</em>-reduction invariants <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, the rank <em>n</em> analogous of the rank one <em>a</em>-invariant <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>p</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msub></math></span> of elliptic curve <span><math><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Such asymptotic results are based on a ‘counting miracle’ of the so-called <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>- and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>-invariants of <span><math><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in rank <em>n</em>, and a remarkable recursive relation on the <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>E</mi><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><mi>n</mi></mrow></msub></math></span>-invariants, both established by Weng–Zagier in <span><span>[22]</span></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 948-968\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002082\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Murmurations and Sato–Tate conjectures for high rank zetas of elliptic curves
For elliptic curves over rationals, there are a well-known conjecture of Sato–Tate and a new computational guided murmuration phenomenon, for which the abelian Artin zeta functions are used. In this paper, we show that both the murmurations and the Sato–Tate conjecture stand equally well for non-abelian high rank zeta functions of the p-reductions of elliptic curves over rationals. We establish our results by carefully examining asymptotic behaviors of the p-reduction invariants , the rank n analogous of the rank one a-invariant of elliptic curve . Such asymptotic results are based on a ‘counting miracle’ of the so-called - and -invariants of in rank n, and a remarkable recursive relation on the -invariants, both established by Weng–Zagier in [22].
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.