非凸域上扩散和次扩散问题的XFEM

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Tao Wang , Yanping Chen , Xiangquan Li , Fangfang Qin
{"title":"非凸域上扩散和次扩散问题的XFEM","authors":"Tao Wang ,&nbsp;Yanping Chen ,&nbsp;Xiangquan Li ,&nbsp;Fangfang Qin","doi":"10.1016/j.camwa.2025.08.027","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a space-time finite element method for solving diffusion and sub-diffusion problems in a non-convex domain. This method employs the discontinuous Galerkin (DG) method for temporal discretization and the eXtended Finite Element Method (XFEM) for spatial discretization, which offers higher accuracy than the standard linear finite element method. Sharp error estimates are derived for diffusion and sub-diffusion problems with smooth and non-smooth initial data in a unified approach. Finally, two numerical examples are provided to verify the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 415-432"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XFEM for the diffusion and sub-diffusion problems in a non-convex domain\",\"authors\":\"Tao Wang ,&nbsp;Yanping Chen ,&nbsp;Xiangquan Li ,&nbsp;Fangfang Qin\",\"doi\":\"10.1016/j.camwa.2025.08.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a space-time finite element method for solving diffusion and sub-diffusion problems in a non-convex domain. This method employs the discontinuous Galerkin (DG) method for temporal discretization and the eXtended Finite Element Method (XFEM) for spatial discretization, which offers higher accuracy than the standard linear finite element method. Sharp error estimates are derived for diffusion and sub-diffusion problems with smooth and non-smooth initial data in a unified approach. Finally, two numerical examples are provided to verify the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"196 \",\"pages\":\"Pages 415-432\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003608\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解非凸域上扩散和次扩散问题的时空有限元方法。该方法采用不连续伽辽金法(DG)进行时间离散,采用扩展有限元法(XFEM)进行空间离散,具有比标准线性有限元法更高的精度。对具有光滑和非光滑初始数据的扩散和次扩散问题,用统一的方法导出了尖锐误差估计。最后,给出了两个数值算例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XFEM for the diffusion and sub-diffusion problems in a non-convex domain
This paper proposes a space-time finite element method for solving diffusion and sub-diffusion problems in a non-convex domain. This method employs the discontinuous Galerkin (DG) method for temporal discretization and the eXtended Finite Element Method (XFEM) for spatial discretization, which offers higher accuracy than the standard linear finite element method. Sharp error estimates are derived for diffusion and sub-diffusion problems with smooth and non-smooth initial data in a unified approach. Finally, two numerical examples are provided to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信