{"title":"混合元启发式算法考虑可持续计算的可再生/不可再生资源和固定存储系统多微电网柔性调节经济能源调度","authors":"Ahad Faraji Naghibi , Ehsan Akbari , Saeid Shahmoradi , Mehdi Veisi , Sasan Pirouzi","doi":"10.1016/j.suscom.2025.101196","DOIUrl":null,"url":null,"abstract":"<div><div>This plan presents energy scheduling in a distribution grid with multi-microgrid according to estimation of environmental, economic, flexibility, operation, and security indicators in microgrids. Microgrid has a multi-bus structure, which includes renewable solar, wind and bio-waste devices, non-renewable resources, compressed air and hydrogen storage. Study contains the three objectives optimization. The objective functions are the minimization of operation cost of microgrids and resources, the environmental pollution of microgrids and voltage deviation function. The constraints of the problem include the optimal power flow formulation of microgrids based on the flexibility and voltage security limits, the performance model of renewable/non-renewable units, and storage devices. Study has parameters of price of energy, load, and renewable phenomena as uncertainty. For their modeling, the point estimation approach is used to according to low computational time and accurately model flexibility. The ε-constraint method is used to extract the single-objective model, and fuzzy decision-making technique is used to achieve the compromise solution. This scheme has a non-convex nonlinear formulation. To access a reliable response considering low deviation for last point, a combination of red panda optimization and ant-lion optimization is used. Funding indicate the ability of plan for improve the technical, environmental, and economic conditions of microgrids. Thus, energy scheduling of the aforementioned units and storages can improve operational, economic, environmental, and voltage stability conditions of microgrids by about 59.2 %, 44.2 %, 24.5 %-75 % and 17.3 %-27.4 %, respectively. In these conditions, study achieves 100 % flexibility for microgrids. Solution approach achieves the sustainable computing conditions, such that it has the most optimal solution at low computational time and a standard deviation of 0.97 % in the final response.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101196"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexibility regulation-based economic energy scheduling in multi-microgrids with renewable/non-renewable resource and stationary storage systems considering sustainable computing by hybrid metaheuristic algorithm\",\"authors\":\"Ahad Faraji Naghibi , Ehsan Akbari , Saeid Shahmoradi , Mehdi Veisi , Sasan Pirouzi\",\"doi\":\"10.1016/j.suscom.2025.101196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This plan presents energy scheduling in a distribution grid with multi-microgrid according to estimation of environmental, economic, flexibility, operation, and security indicators in microgrids. Microgrid has a multi-bus structure, which includes renewable solar, wind and bio-waste devices, non-renewable resources, compressed air and hydrogen storage. Study contains the three objectives optimization. The objective functions are the minimization of operation cost of microgrids and resources, the environmental pollution of microgrids and voltage deviation function. The constraints of the problem include the optimal power flow formulation of microgrids based on the flexibility and voltage security limits, the performance model of renewable/non-renewable units, and storage devices. Study has parameters of price of energy, load, and renewable phenomena as uncertainty. For their modeling, the point estimation approach is used to according to low computational time and accurately model flexibility. The ε-constraint method is used to extract the single-objective model, and fuzzy decision-making technique is used to achieve the compromise solution. This scheme has a non-convex nonlinear formulation. To access a reliable response considering low deviation for last point, a combination of red panda optimization and ant-lion optimization is used. Funding indicate the ability of plan for improve the technical, environmental, and economic conditions of microgrids. Thus, energy scheduling of the aforementioned units and storages can improve operational, economic, environmental, and voltage stability conditions of microgrids by about 59.2 %, 44.2 %, 24.5 %-75 % and 17.3 %-27.4 %, respectively. In these conditions, study achieves 100 % flexibility for microgrids. Solution approach achieves the sustainable computing conditions, such that it has the most optimal solution at low computational time and a standard deviation of 0.97 % in the final response.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"48 \",\"pages\":\"Article 101196\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925001179\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001179","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Flexibility regulation-based economic energy scheduling in multi-microgrids with renewable/non-renewable resource and stationary storage systems considering sustainable computing by hybrid metaheuristic algorithm
This plan presents energy scheduling in a distribution grid with multi-microgrid according to estimation of environmental, economic, flexibility, operation, and security indicators in microgrids. Microgrid has a multi-bus structure, which includes renewable solar, wind and bio-waste devices, non-renewable resources, compressed air and hydrogen storage. Study contains the three objectives optimization. The objective functions are the minimization of operation cost of microgrids and resources, the environmental pollution of microgrids and voltage deviation function. The constraints of the problem include the optimal power flow formulation of microgrids based on the flexibility and voltage security limits, the performance model of renewable/non-renewable units, and storage devices. Study has parameters of price of energy, load, and renewable phenomena as uncertainty. For their modeling, the point estimation approach is used to according to low computational time and accurately model flexibility. The ε-constraint method is used to extract the single-objective model, and fuzzy decision-making technique is used to achieve the compromise solution. This scheme has a non-convex nonlinear formulation. To access a reliable response considering low deviation for last point, a combination of red panda optimization and ant-lion optimization is used. Funding indicate the ability of plan for improve the technical, environmental, and economic conditions of microgrids. Thus, energy scheduling of the aforementioned units and storages can improve operational, economic, environmental, and voltage stability conditions of microgrids by about 59.2 %, 44.2 %, 24.5 %-75 % and 17.3 %-27.4 %, respectively. In these conditions, study achieves 100 % flexibility for microgrids. Solution approach achieves the sustainable computing conditions, such that it has the most optimal solution at low computational time and a standard deviation of 0.97 % in the final response.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.