平面分段光滑向量场正测度极小集上的几何奇异摄动

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Tiago Carvalho , Luiz Fernando Gonçalves , Bruno Rodrigues Freitas
{"title":"平面分段光滑向量场正测度极小集上的几何奇异摄动","authors":"Tiago Carvalho ,&nbsp;Luiz Fernando Gonçalves ,&nbsp;Bruno Rodrigues Freitas","doi":"10.1016/j.nahs.2025.101628","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we employ the geometric theory of singular perturbations to obtain detailed insights concerning a class of piecewise smooth vector fields exhibiting a positive measure minimal set. The canonical form used in our analysis represents a larger class of piecewise smooth systems, encompassing models of discontinuous harmonic oscillators. Through a desingularization process, which entails the application of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-regularization function along with successive weighted blow-ups (directional, spherical and polar), we obtain an attractor for the trajectories of the desingularized vector field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"58 ","pages":"Article 101628"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric singular perturbation on a positive measure minimal set of a planar piecewise smooth vector field\",\"authors\":\"Tiago Carvalho ,&nbsp;Luiz Fernando Gonçalves ,&nbsp;Bruno Rodrigues Freitas\",\"doi\":\"10.1016/j.nahs.2025.101628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we employ the geometric theory of singular perturbations to obtain detailed insights concerning a class of piecewise smooth vector fields exhibiting a positive measure minimal set. The canonical form used in our analysis represents a larger class of piecewise smooth systems, encompassing models of discontinuous harmonic oscillators. Through a desingularization process, which entails the application of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-regularization function along with successive weighted blow-ups (directional, spherical and polar), we obtain an attractor for the trajectories of the desingularized vector field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"58 \",\"pages\":\"Article 101628\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X25000548\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X25000548","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用奇异摄动的几何理论,对一类具有正测度极小集的分段光滑向量场进行了详细的研究。在我们的分析中使用的规范形式代表了更大的一类分段光滑系统,包括不连续谐振子的模型。通过一个去广域化过程,该过程需要应用一个n-正则化函数以及连续的加权爆炸(定向的,球面的和极的),我们得到了去广域化向量场Zω轨迹的吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric singular perturbation on a positive measure minimal set of a planar piecewise smooth vector field
In this paper, we employ the geometric theory of singular perturbations to obtain detailed insights concerning a class of piecewise smooth vector fields exhibiting a positive measure minimal set. The canonical form used in our analysis represents a larger class of piecewise smooth systems, encompassing models of discontinuous harmonic oscillators. Through a desingularization process, which entails the application of a Cn-regularization function along with successive weighted blow-ups (directional, spherical and polar), we obtain an attractor for the trajectories of the desingularized vector field Zω.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信