{"title":"在k -lca框架内对dag进行表征和转化","authors":"Marc Hellmuth, Anna Lindeberg","doi":"10.1016/j.dam.2025.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the connections between clusters and least common ancestors (LCAs) in directed acyclic graphs (DAGs), focusing on the interplay between so-called <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs and DAGs with the <span><math><mi>ℐ</mi></math></span>-lca-property. Here, <span><math><mi>ℐ</mi></math></span> denotes a set of integers. In <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs, each vertex is the unique LCA for some subset <span><math><mi>A</mi></math></span> of leaves of size <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>∈</mo><mi>ℐ</mi></mrow></math></span>, whereas in a DAG with the <span><math><mi>ℐ</mi></math></span>-lca-property there exists a unique LCA for every subset <span><math><mi>A</mi></math></span> of leaves satisfying <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>∈</mo><mi>ℐ</mi></mrow></math></span>. We elaborate on the difference between these two properties and establish their close relationship to pre-<span><math><mi>ℐ</mi></math></span>-ary and <span><math><mi>ℐ</mi></math></span>-ary set systems. This, in turn, generalizes results established for (pre-) binary and <span><math><mi>k</mi></math></span>-ary set systems. Moreover, we build upon recently established results that use a simple operator <span><math><mo>⊖</mo></math></span>, enabling the transformation of arbitrary DAGs into <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs. This process reduces unnecessary complexity while preserving key structural properties of the original DAG. The set <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> consists of all clusters in a DAG <span><math><mi>G</mi></math></span>, where clusters correspond to the descendant leaves of vertices. While in some cases <span><math><mrow><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> when transforming <span><math><mi>G</mi></math></span> into an <span><math><mi>ℐ</mi></math></span>-lca-relevant DAG <span><math><mi>H</mi></math></span>, it often happens that certain clusters in <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> do not appear as clusters in <span><math><mi>H</mi></math></span>. To understand this phenomenon in detail, we characterize the subset of clusters in <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> that remain in <span><math><mi>H</mi></math></span> for DAGs <span><math><mi>G</mi></math></span> with the <span><math><mi>ℐ</mi></math></span>-lca-property. Furthermore, we show that the set <span><math><mi>W</mi></math></span> of vertices required to transform <span><math><mi>G</mi></math></span> into <span><math><mrow><mi>H</mi><mo>=</mo><mi>G</mi><mo>⊖</mo><mi>W</mi></mrow></math></span> is uniquely determined for such DAGs. This, in turn, allows us to show that the “shortcut-free” version of the transformed DAG <span><math><mi>H</mi></math></span> is always a tree or a galled-tree whenever <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> represents the clustering system of a tree or galled-tree and <span><math><mi>G</mi></math></span> has the <span><math><mi>ℐ</mi></math></span>-lca-property. In the latter case <span><math><mrow><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> always holds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 584-593"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing and transforming DAGs within the ℐ-lca framework\",\"authors\":\"Marc Hellmuth, Anna Lindeberg\",\"doi\":\"10.1016/j.dam.2025.08.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the connections between clusters and least common ancestors (LCAs) in directed acyclic graphs (DAGs), focusing on the interplay between so-called <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs and DAGs with the <span><math><mi>ℐ</mi></math></span>-lca-property. Here, <span><math><mi>ℐ</mi></math></span> denotes a set of integers. In <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs, each vertex is the unique LCA for some subset <span><math><mi>A</mi></math></span> of leaves of size <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>∈</mo><mi>ℐ</mi></mrow></math></span>, whereas in a DAG with the <span><math><mi>ℐ</mi></math></span>-lca-property there exists a unique LCA for every subset <span><math><mi>A</mi></math></span> of leaves satisfying <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>∈</mo><mi>ℐ</mi></mrow></math></span>. We elaborate on the difference between these two properties and establish their close relationship to pre-<span><math><mi>ℐ</mi></math></span>-ary and <span><math><mi>ℐ</mi></math></span>-ary set systems. This, in turn, generalizes results established for (pre-) binary and <span><math><mi>k</mi></math></span>-ary set systems. Moreover, we build upon recently established results that use a simple operator <span><math><mo>⊖</mo></math></span>, enabling the transformation of arbitrary DAGs into <span><math><mi>ℐ</mi></math></span>-lca-relevant DAGs. This process reduces unnecessary complexity while preserving key structural properties of the original DAG. The set <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> consists of all clusters in a DAG <span><math><mi>G</mi></math></span>, where clusters correspond to the descendant leaves of vertices. While in some cases <span><math><mrow><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> when transforming <span><math><mi>G</mi></math></span> into an <span><math><mi>ℐ</mi></math></span>-lca-relevant DAG <span><math><mi>H</mi></math></span>, it often happens that certain clusters in <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> do not appear as clusters in <span><math><mi>H</mi></math></span>. To understand this phenomenon in detail, we characterize the subset of clusters in <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> that remain in <span><math><mi>H</mi></math></span> for DAGs <span><math><mi>G</mi></math></span> with the <span><math><mi>ℐ</mi></math></span>-lca-property. Furthermore, we show that the set <span><math><mi>W</mi></math></span> of vertices required to transform <span><math><mi>G</mi></math></span> into <span><math><mrow><mi>H</mi><mo>=</mo><mi>G</mi><mo>⊖</mo><mi>W</mi></mrow></math></span> is uniquely determined for such DAGs. This, in turn, allows us to show that the “shortcut-free” version of the transformed DAG <span><math><mi>H</mi></math></span> is always a tree or a galled-tree whenever <span><math><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> represents the clustering system of a tree or galled-tree and <span><math><mi>G</mi></math></span> has the <span><math><mi>ℐ</mi></math></span>-lca-property. In the latter case <span><math><mrow><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ℭ</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> always holds.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 584-593\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004780\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004780","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Characterizing and transforming DAGs within the ℐ-lca framework
We explore the connections between clusters and least common ancestors (LCAs) in directed acyclic graphs (DAGs), focusing on the interplay between so-called -lca-relevant DAGs and DAGs with the -lca-property. Here, denotes a set of integers. In -lca-relevant DAGs, each vertex is the unique LCA for some subset of leaves of size , whereas in a DAG with the -lca-property there exists a unique LCA for every subset of leaves satisfying . We elaborate on the difference between these two properties and establish their close relationship to pre--ary and -ary set systems. This, in turn, generalizes results established for (pre-) binary and -ary set systems. Moreover, we build upon recently established results that use a simple operator , enabling the transformation of arbitrary DAGs into -lca-relevant DAGs. This process reduces unnecessary complexity while preserving key structural properties of the original DAG. The set consists of all clusters in a DAG , where clusters correspond to the descendant leaves of vertices. While in some cases when transforming into an -lca-relevant DAG , it often happens that certain clusters in do not appear as clusters in . To understand this phenomenon in detail, we characterize the subset of clusters in that remain in for DAGs with the -lca-property. Furthermore, we show that the set of vertices required to transform into is uniquely determined for such DAGs. This, in turn, allows us to show that the “shortcut-free” version of the transformed DAG is always a tree or a galled-tree whenever represents the clustering system of a tree or galled-tree and has the -lca-property. In the latter case always holds.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.