常压等离子体改性制备超薄高孔分子筛二氧化硅膜

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shun Aoyama, Hiroki Nagasawa*, Norihiro Moriyama, Kenji Ito, Toshinori Tsuru and Masakoto Kanezashi, 
{"title":"常压等离子体改性制备超薄高孔分子筛二氧化硅膜","authors":"Shun Aoyama,&nbsp;Hiroki Nagasawa*,&nbsp;Norihiro Moriyama,&nbsp;Kenji Ito,&nbsp;Toshinori Tsuru and Masakoto Kanezashi,&nbsp;","doi":"10.1021/acsmaterialslett.5c00576","DOIUrl":null,"url":null,"abstract":"<p >Microporous silica membranes are promising candidates for energy-efficient chemical separation processes. Herein, we aimed to address the permeance-selectivity tradeoff inherent in conventional silica membranes by applying plasma surface modification to pendant-type silica membranes. We focused on the bulkiness of pendant groups and employed phenyl-functionalized silica membranes. The modification enabled precise control over the pore structure and hydrophilicity within a thickness of less than 20 nm, attributed to the decomposition of bulky phenyl groups performing like nano templates, resulting in the formation of Si–OH groups and Si–O–Si cross-links. Consequently, the plasma-modified membrane exhibited a high H<sub>2</sub>O permeance of 5.6 × 10<sup>–6</sup> mol m<sup>–2</sup> s<sup>–1</sup> Pa<sup>–1</sup> and H<sub>2</sub>O/EtOH permeance ratio of 5300 in pervaporation dehydration, overcoming the tradeoff. A novel strategy for producing highly porous ultrathin silica membranes by a facile process employing atmospheric-pressure plasma surface modification is proposed.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 9","pages":"3058–3064"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.5c00576","citationCount":"0","resultStr":"{\"title\":\"Ultrathin Highly Porous Molecular-Sieve Silica Membranes Developed by a Facile Process Using Atmospheric-Pressure Plasma Modification\",\"authors\":\"Shun Aoyama,&nbsp;Hiroki Nagasawa*,&nbsp;Norihiro Moriyama,&nbsp;Kenji Ito,&nbsp;Toshinori Tsuru and Masakoto Kanezashi,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.5c00576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microporous silica membranes are promising candidates for energy-efficient chemical separation processes. Herein, we aimed to address the permeance-selectivity tradeoff inherent in conventional silica membranes by applying plasma surface modification to pendant-type silica membranes. We focused on the bulkiness of pendant groups and employed phenyl-functionalized silica membranes. The modification enabled precise control over the pore structure and hydrophilicity within a thickness of less than 20 nm, attributed to the decomposition of bulky phenyl groups performing like nano templates, resulting in the formation of Si–OH groups and Si–O–Si cross-links. Consequently, the plasma-modified membrane exhibited a high H<sub>2</sub>O permeance of 5.6 × 10<sup>–6</sup> mol m<sup>–2</sup> s<sup>–1</sup> Pa<sup>–1</sup> and H<sub>2</sub>O/EtOH permeance ratio of 5300 in pervaporation dehydration, overcoming the tradeoff. A novel strategy for producing highly porous ultrathin silica membranes by a facile process employing atmospheric-pressure plasma surface modification is proposed.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 9\",\"pages\":\"3058–3064\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.5c00576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00576\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00576","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微孔二氧化硅膜是高效节能化学分离工艺的理想选择。在这里,我们的目的是通过对悬挂式二氧化硅膜进行等离子体表面改性来解决传统二氧化硅膜固有的渗透-选择性权衡。我们专注于悬垂基团的体积,并采用苯基功能化二氧化硅膜。这种修饰可以在小于20nm的厚度内精确控制孔结构和亲水性,这是由于分解了像纳米模板一样的大块苯基,形成了Si-OH基团和Si-O-Si交联。因此,等离子体修饰膜在渗透蒸发脱水过程中具有5.6 × 10-6 mol m-2 s-1 Pa-1的高水透性和5300的水/乙醚透性,克服了两者之间的权衡。提出了一种利用常压等离子体表面改性的简易工艺制备高孔超薄二氧化硅膜的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrathin Highly Porous Molecular-Sieve Silica Membranes Developed by a Facile Process Using Atmospheric-Pressure Plasma Modification

Microporous silica membranes are promising candidates for energy-efficient chemical separation processes. Herein, we aimed to address the permeance-selectivity tradeoff inherent in conventional silica membranes by applying plasma surface modification to pendant-type silica membranes. We focused on the bulkiness of pendant groups and employed phenyl-functionalized silica membranes. The modification enabled precise control over the pore structure and hydrophilicity within a thickness of less than 20 nm, attributed to the decomposition of bulky phenyl groups performing like nano templates, resulting in the formation of Si–OH groups and Si–O–Si cross-links. Consequently, the plasma-modified membrane exhibited a high H2O permeance of 5.6 × 10–6 mol m–2 s–1 Pa–1 and H2O/EtOH permeance ratio of 5300 in pervaporation dehydration, overcoming the tradeoff. A novel strategy for producing highly porous ultrathin silica membranes by a facile process employing atmospheric-pressure plasma surface modification is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信