Cheng Lu, Xi Shen, Yanhong Lin, Jinjin Li* and Liangming Wei*,
{"title":"基于锌阳极和铝基电解质的铝锌混合离子电池的综合分析","authors":"Cheng Lu, Xi Shen, Yanhong Lin, Jinjin Li* and Liangming Wei*, ","doi":"10.1021/acsmaterialslett.5c00912","DOIUrl":null,"url":null,"abstract":"<p >The insulating alumina layer on aluminum anodes significantly hinders their reversibility in AAIBs. Although substituting aluminum with active metals (Li, K, Ca, Na, Mg, Zn, Sn, and Pb) offers a solution, systematic comparisons of their plating/stripping behavior in aluminum-based electrolytes are scarce. We comprehensively evaluate metal anodes, electrolytes (1 M AlCl<sub>3</sub>, 1 M Al(NO<sub>3</sub>)<sub>3</sub>, 1 M Al(ClO<sub>4</sub>)<sub>3</sub> and 0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>), and separators (glass fiber, cellulose) to optimize interfacial performance. The Zn anode with 0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte and cellulose separator shows remarkable stability, demonstrating low polarization (<0.2 V) and extended cycling (>1000 h) in symmetric cells. Additionally, the assembled Zn/0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>/polyaniline hybrid battery achieves high capacity (∼294 mAh g<sup>–1</sup>) and discharge voltage (∼1.3 V), establishing a material selection framework for advanced aqueous multivalent-ion batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 9","pages":"3103–3110"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of Aqueous Aluminum–Zinc Hybrid Ion Batteries Based on Zinc Anode and Aluminum-Based Electrolyte\",\"authors\":\"Cheng Lu, Xi Shen, Yanhong Lin, Jinjin Li* and Liangming Wei*, \",\"doi\":\"10.1021/acsmaterialslett.5c00912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The insulating alumina layer on aluminum anodes significantly hinders their reversibility in AAIBs. Although substituting aluminum with active metals (Li, K, Ca, Na, Mg, Zn, Sn, and Pb) offers a solution, systematic comparisons of their plating/stripping behavior in aluminum-based electrolytes are scarce. We comprehensively evaluate metal anodes, electrolytes (1 M AlCl<sub>3</sub>, 1 M Al(NO<sub>3</sub>)<sub>3</sub>, 1 M Al(ClO<sub>4</sub>)<sub>3</sub> and 0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>), and separators (glass fiber, cellulose) to optimize interfacial performance. The Zn anode with 0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte and cellulose separator shows remarkable stability, demonstrating low polarization (<0.2 V) and extended cycling (>1000 h) in symmetric cells. Additionally, the assembled Zn/0.5 M Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>/polyaniline hybrid battery achieves high capacity (∼294 mAh g<sup>–1</sup>) and discharge voltage (∼1.3 V), establishing a material selection framework for advanced aqueous multivalent-ion batteries.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 9\",\"pages\":\"3103–3110\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00912\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00912","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
铝阳极上的绝缘氧化铝层明显阻碍了铝阳极在aaib中的可逆性。虽然用活性金属(Li, K, Ca, Na, Mg, Zn, Sn和Pb)代替铝提供了一种解决方案,但对它们在铝基电解质中的镀/剥离行为的系统比较很少。我们综合评估了金属阳极、电解质(1 M AlCl3、1 M Al(NO3)3、1 M Al(ClO4)3和0.5 M Al2(SO4)3)和分离器(玻璃纤维、纤维素),以优化界面性能。采用0.5 M Al2(SO4)3电解质和纤维素分离器制备的锌阳极在对称电池中表现出较低的极化(<0.2 V)和较长的循环时间(>1000 h)。此外,组装的Zn/0.5 M Al2(SO4)3/聚苯胺混合电池实现了高容量(~ 294 mAh g-1)和放电电压(~ 1.3 V),为先进的水性多价离子电池建立了材料选择框架。
Comprehensive Analysis of Aqueous Aluminum–Zinc Hybrid Ion Batteries Based on Zinc Anode and Aluminum-Based Electrolyte
The insulating alumina layer on aluminum anodes significantly hinders their reversibility in AAIBs. Although substituting aluminum with active metals (Li, K, Ca, Na, Mg, Zn, Sn, and Pb) offers a solution, systematic comparisons of their plating/stripping behavior in aluminum-based electrolytes are scarce. We comprehensively evaluate metal anodes, electrolytes (1 M AlCl3, 1 M Al(NO3)3, 1 M Al(ClO4)3 and 0.5 M Al2(SO4)3), and separators (glass fiber, cellulose) to optimize interfacial performance. The Zn anode with 0.5 M Al2(SO4)3 electrolyte and cellulose separator shows remarkable stability, demonstrating low polarization (<0.2 V) and extended cycling (>1000 h) in symmetric cells. Additionally, the assembled Zn/0.5 M Al2(SO4)3/polyaniline hybrid battery achieves high capacity (∼294 mAh g–1) and discharge voltage (∼1.3 V), establishing a material selection framework for advanced aqueous multivalent-ion batteries.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.