利用荧光定位技术对硅中单G中心进行纳米定位和原位增强

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu-Hang Ma, Nai-Jie Guo, Wei Liu, Xiao-Dong Zeng, Lin-Ke Xie, Jun-You Liu, Ya-Qi Wu, Yi-Tao Wang, Zhao-An Wang, Jia-Ming Ren, Chun Ao, Haifei Lu, Jian-Shun Tang*, Chuan-Feng Li* and Guang-Can Guo, 
{"title":"利用荧光定位技术对硅中单G中心进行纳米定位和原位增强","authors":"Yu-Hang Ma,&nbsp;Nai-Jie Guo,&nbsp;Wei Liu,&nbsp;Xiao-Dong Zeng,&nbsp;Lin-Ke Xie,&nbsp;Jun-You Liu,&nbsp;Ya-Qi Wu,&nbsp;Yi-Tao Wang,&nbsp;Zhao-An Wang,&nbsp;Jia-Ming Ren,&nbsp;Chun Ao,&nbsp;Haifei Lu,&nbsp;Jian-Shun Tang*,&nbsp;Chuan-Feng Li* and Guang-Can Guo,&nbsp;","doi":"10.1021/acsphotonics.5c01247","DOIUrl":null,"url":null,"abstract":"<p >Silicon-based semiconductor nanofabrication technology has achieved a remarkable level of sophistication and maturity, and color centers in silicon naturally inherit this advantage. Besides, their emissions appear in telecommunication bands, which makes them play a crucial role in the construction of a quantum network. To address the challenge of weak spontaneous emission, different optical cavities are fabricated to enhance the emission rate. However, the relative location between cavity and emitter is random, which greatly reduces the success probability of enhancement. Here, we report on a fluorescence-localization technique (FLT) for precisely locating a single G center in silicon and embedding it in the center of a circular Bragg grating cavity in situ, achieving 240-times improvement of the success probability. We observe a 30-fold enhancement of luminescence, 2.5-fold acceleration of the emission from a single G center, corresponding to a Purcell factor exceeding 11. Our findings pave the way for large-scale integration of quantum light sources.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 9","pages":"5240–5247"},"PeriodicalIF":6.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Positioning and In Situ Enhancement of Single G Center in Silicon Using a Fluorescence-Localization Technique\",\"authors\":\"Yu-Hang Ma,&nbsp;Nai-Jie Guo,&nbsp;Wei Liu,&nbsp;Xiao-Dong Zeng,&nbsp;Lin-Ke Xie,&nbsp;Jun-You Liu,&nbsp;Ya-Qi Wu,&nbsp;Yi-Tao Wang,&nbsp;Zhao-An Wang,&nbsp;Jia-Ming Ren,&nbsp;Chun Ao,&nbsp;Haifei Lu,&nbsp;Jian-Shun Tang*,&nbsp;Chuan-Feng Li* and Guang-Can Guo,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon-based semiconductor nanofabrication technology has achieved a remarkable level of sophistication and maturity, and color centers in silicon naturally inherit this advantage. Besides, their emissions appear in telecommunication bands, which makes them play a crucial role in the construction of a quantum network. To address the challenge of weak spontaneous emission, different optical cavities are fabricated to enhance the emission rate. However, the relative location between cavity and emitter is random, which greatly reduces the success probability of enhancement. Here, we report on a fluorescence-localization technique (FLT) for precisely locating a single G center in silicon and embedding it in the center of a circular Bragg grating cavity in situ, achieving 240-times improvement of the success probability. We observe a 30-fold enhancement of luminescence, 2.5-fold acceleration of the emission from a single G center, corresponding to a Purcell factor exceeding 11. Our findings pave the way for large-scale integration of quantum light sources.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 9\",\"pages\":\"5240–5247\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01247\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01247","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅基半导体纳米制造技术已经达到了非常复杂和成熟的水平,硅中的色心自然继承了这一优势。此外,它们的发射出现在电信频段,这使得它们在量子网络的构建中起着至关重要的作用。为了解决弱自发发射的难题,制造了不同的光腔来提高发射速率。然而,腔体和发射极之间的相对位置是随机的,这大大降低了增强的成功率。在这里,我们报道了一种荧光定位技术(FLT),用于精确定位硅中的单个G中心并将其原位嵌入圆形布拉格光栅腔的中心,成功概率提高了240倍。我们观察到单个G中心的发光增强了30倍,发射加速了2.5倍,对应于Purcell因子超过11。我们的发现为大规模集成量子光源铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale Positioning and In Situ Enhancement of Single G Center in Silicon Using a Fluorescence-Localization Technique

Nanoscale Positioning and In Situ Enhancement of Single G Center in Silicon Using a Fluorescence-Localization Technique

Nanoscale Positioning and In Situ Enhancement of Single G Center in Silicon Using a Fluorescence-Localization Technique

Silicon-based semiconductor nanofabrication technology has achieved a remarkable level of sophistication and maturity, and color centers in silicon naturally inherit this advantage. Besides, their emissions appear in telecommunication bands, which makes them play a crucial role in the construction of a quantum network. To address the challenge of weak spontaneous emission, different optical cavities are fabricated to enhance the emission rate. However, the relative location between cavity and emitter is random, which greatly reduces the success probability of enhancement. Here, we report on a fluorescence-localization technique (FLT) for precisely locating a single G center in silicon and embedding it in the center of a circular Bragg grating cavity in situ, achieving 240-times improvement of the success probability. We observe a 30-fold enhancement of luminescence, 2.5-fold acceleration of the emission from a single G center, corresponding to a Purcell factor exceeding 11. Our findings pave the way for large-scale integration of quantum light sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信