{"title":"解码微生物生态和功能:在纸浆造纸处理系统中被氯木质素化合物污染的活性污泥的宏基因组分析","authors":"Vineet Kumar, Sirat Sandil, Pradeep Verma, Fuad Ameen","doi":"10.1007/s00203-025-04443-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to profile the dynamics of indigenous bacterial communities in activated sludge, assess the pollutant load, and unlock the functional genes involved during the activated sludge treatment process. The physicochemical analyses of activated sludge revealed high amounts of phosphate, sulfate, chloride, and lignin, along with heavy metals like Fe, Zn, Cu, Ni, and Pb. Simultaneously, the GC–MS/MS technique identified decane, 1 bromo-2-methyl, pentadecanoic acid, methyl ester, benzene dicarboxylic acid, stigmasterol, borinic acid, diethyl, 2-hydroxymethyl cyclopropane, 2-methoxy-4-ethyl-phenol, 3,4,5-trichlorophenol, octadecanoic acid, and tetracosanic acid as major compounds. Furthermore, taxonomic classification of operational taxonomic unit (OTU) data revealed that <i>Proteobacteria</i> was the most abundant phylum, comprising 44.54% of the microbial community. In addition, other phyla, such as <i>Bacteriodetes</i>, <i>Acidobacteria</i>, <i>Planctomycetes</i>, <i>Chlorolfexi</i>, <i>Actinobacteria</i>, and <i>Verrucomicrobia</i> were also recorded within a range between 13.27 and 4.1% in the sludge. At the genus and species levels, the dominant organisms were unclassified (3.62%) and belonged to the family Rhodospirillacea. Further, PICRUSt2-based KEGG Orthology (KO) analysis showed enriched energy metabolism as the most abundant category, driven by oxidative phosphorylation and the TCA cycle. Furthermore, the MetaCyc analysis revealed a robust and adaptable microbial community with the dominant pathways of aerobic respiration I (cytochrome c) and fatty acid biosynthesis pathways, such as cis-vaccenate biosynthesis. The EC assignments highlighted a broad range of enzymatic functions, with a strong emphasis on oxidoreductases and transferases involved in energy production and biosynthesis. This research offers valuable insights into microbial community dynamics in wastewater treatment processes and identifies their functional role in a chlorolignin waste-polluted environment.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding microbial ecology and functions: metagenomic profiling of activated sludge contaminated with chlorolignin compounds in a pulp-paper mill treatment system\",\"authors\":\"Vineet Kumar, Sirat Sandil, Pradeep Verma, Fuad Ameen\",\"doi\":\"10.1007/s00203-025-04443-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to profile the dynamics of indigenous bacterial communities in activated sludge, assess the pollutant load, and unlock the functional genes involved during the activated sludge treatment process. The physicochemical analyses of activated sludge revealed high amounts of phosphate, sulfate, chloride, and lignin, along with heavy metals like Fe, Zn, Cu, Ni, and Pb. Simultaneously, the GC–MS/MS technique identified decane, 1 bromo-2-methyl, pentadecanoic acid, methyl ester, benzene dicarboxylic acid, stigmasterol, borinic acid, diethyl, 2-hydroxymethyl cyclopropane, 2-methoxy-4-ethyl-phenol, 3,4,5-trichlorophenol, octadecanoic acid, and tetracosanic acid as major compounds. Furthermore, taxonomic classification of operational taxonomic unit (OTU) data revealed that <i>Proteobacteria</i> was the most abundant phylum, comprising 44.54% of the microbial community. In addition, other phyla, such as <i>Bacteriodetes</i>, <i>Acidobacteria</i>, <i>Planctomycetes</i>, <i>Chlorolfexi</i>, <i>Actinobacteria</i>, and <i>Verrucomicrobia</i> were also recorded within a range between 13.27 and 4.1% in the sludge. At the genus and species levels, the dominant organisms were unclassified (3.62%) and belonged to the family Rhodospirillacea. Further, PICRUSt2-based KEGG Orthology (KO) analysis showed enriched energy metabolism as the most abundant category, driven by oxidative phosphorylation and the TCA cycle. Furthermore, the MetaCyc analysis revealed a robust and adaptable microbial community with the dominant pathways of aerobic respiration I (cytochrome c) and fatty acid biosynthesis pathways, such as cis-vaccenate biosynthesis. The EC assignments highlighted a broad range of enzymatic functions, with a strong emphasis on oxidoreductases and transferases involved in energy production and biosynthesis. This research offers valuable insights into microbial community dynamics in wastewater treatment processes and identifies their functional role in a chlorolignin waste-polluted environment.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04443-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04443-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Decoding microbial ecology and functions: metagenomic profiling of activated sludge contaminated with chlorolignin compounds in a pulp-paper mill treatment system
This study aimed to profile the dynamics of indigenous bacterial communities in activated sludge, assess the pollutant load, and unlock the functional genes involved during the activated sludge treatment process. The physicochemical analyses of activated sludge revealed high amounts of phosphate, sulfate, chloride, and lignin, along with heavy metals like Fe, Zn, Cu, Ni, and Pb. Simultaneously, the GC–MS/MS technique identified decane, 1 bromo-2-methyl, pentadecanoic acid, methyl ester, benzene dicarboxylic acid, stigmasterol, borinic acid, diethyl, 2-hydroxymethyl cyclopropane, 2-methoxy-4-ethyl-phenol, 3,4,5-trichlorophenol, octadecanoic acid, and tetracosanic acid as major compounds. Furthermore, taxonomic classification of operational taxonomic unit (OTU) data revealed that Proteobacteria was the most abundant phylum, comprising 44.54% of the microbial community. In addition, other phyla, such as Bacteriodetes, Acidobacteria, Planctomycetes, Chlorolfexi, Actinobacteria, and Verrucomicrobia were also recorded within a range between 13.27 and 4.1% in the sludge. At the genus and species levels, the dominant organisms were unclassified (3.62%) and belonged to the family Rhodospirillacea. Further, PICRUSt2-based KEGG Orthology (KO) analysis showed enriched energy metabolism as the most abundant category, driven by oxidative phosphorylation and the TCA cycle. Furthermore, the MetaCyc analysis revealed a robust and adaptable microbial community with the dominant pathways of aerobic respiration I (cytochrome c) and fatty acid biosynthesis pathways, such as cis-vaccenate biosynthesis. The EC assignments highlighted a broad range of enzymatic functions, with a strong emphasis on oxidoreductases and transferases involved in energy production and biosynthesis. This research offers valuable insights into microbial community dynamics in wastewater treatment processes and identifies their functional role in a chlorolignin waste-polluted environment.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.